Quantum Circuits and ZX-Calculus

Renaud Vilmart

Inria, LMF, Université Paris-Saclay

January 19th, 2021

Plan

1 Introduction

- Quantum Circuits Gates and Processes General Results
- 3 ZX-Calculus The Discurrent
 - The Diagrams Equational Theory·ies Completeness
- 4 Applications and Conclusion

Context

Advantages allowed by quantum computing:

- algorithms (Shor, Grover, ...)
- cryptography
- simulation

Context

Advantages allowed by quantum computing:

- algorithms (Shor, Grover, ...)
- cryptography
- simulation

Develop tools for :

- representing
- analysing/reasoning
- optimising
- verifying

quantum program/protocols.

• Classical bits as vectors:
$$|0\rangle := \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $|1\rangle := \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

• Classical bits as vectors:
$$|0\rangle := \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $|1\rangle := \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

• Arbitrary quantum bits (qubits):
$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

• Classical bits as vectors:
$$|0\rangle := \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $|1\rangle := \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
• Arbitrary quantum bits (qubits): $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \xrightarrow{|\alpha|^2} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ after measurement.
 $|\beta|^2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

• Classical bits as vectors:
$$|0\rangle := \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $|1\rangle := \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
• Arbitrary quantum bits (qubits): $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \xrightarrow{|\alpha|^2} \begin{pmatrix} 1 \\ 0 \\ |\beta|^2 \end{pmatrix}$ after measurement.

• Larger systems: $q_0 \otimes q_1$

• Classical bits as vectors:
$$|0\rangle := \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $|1\rangle := \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
• Arbitrary quantum bits (qubits): $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \xrightarrow{|\alpha|^2} \begin{pmatrix} 1 \\ 0 \\ |\beta|^2} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ after measurement.
• Larger systems: $q_0 \otimes q_1$ $A \otimes B = \begin{pmatrix} a_{00}B & a_{01}B & \cdots \\ a_{10}B & \ddots \\ \vdots & \ddots \end{pmatrix}$

• Classical bits as vectors:
$$|0\rangle := \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $|1\rangle := \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
• Arbitrary quantum bits (qubits): $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \xrightarrow{|\alpha|^2} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
 $|\beta|^2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ after measurement.
• Larger systems: $q_0 \otimes q_1$
 $A \otimes B = \begin{pmatrix} a_{00}B & a_{01}B & \cdots \\ a_{10}B & \ddots \\ \vdots & \ddots \end{pmatrix}$

• Entangled state cannot be broken down as $q_0 \otimes q_1$

• Classical bits as vectors:
$$|0\rangle := \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $|1\rangle := \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
• Arbitrary quantum bits (qubits): $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \xrightarrow{|\alpha|^2} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
 $|\beta|^2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ after measurement.
 $A \otimes B = \begin{pmatrix} a_{00}B & a_{01}B & \cdots \\ a_{10}B & \ddots \\ \vdots & \ddots \end{pmatrix}$

- Entangled state cannot be broken down as $q_0 \otimes q_1$
- Isolated systems evolve unitarily: $|\psi_1
 angle=U\,|\psi_0
 angle$ with $U^\dagger U=id=UU^\dagger$

•
$$H := \frac{1}{\sqrt{2}} \begin{array}{c} |0\rangle & |1\rangle \\ |1\rangle \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 is unitary

•
$$H := \frac{1}{\sqrt{2}} \stackrel{|0\rangle}{|1\rangle} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 is unitary
• $|+\rangle := H |0\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$ and $|-\rangle := H |1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$ (($|0\rangle, |1\rangle$) and ($|+\rangle, |-\rangle$) are bases of \mathbb{C}^2)

•
$$H := \frac{1}{\sqrt{2}} | \stackrel{|0\rangle}{|1\rangle} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 is unitary
• $|+\rangle := H | 0 \rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$ and $|-\rangle := H | 1 \rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$ (($|0\rangle, |1\rangle$) and ($|+\rangle, |-\rangle$) are bases of \mathbb{C}^2)
• EPR: $\frac{|00\rangle + |11\rangle}{\sqrt{2}}$ is entangled

•
$$H := \frac{1}{\sqrt{2}} | \stackrel{|0\rangle}{|1\rangle} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 is unitary
• $|+\rangle := H | 0 \rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$ and $|-\rangle := H | 1 \rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$ $((|0\rangle, |1\rangle) \text{ and } (|+\rangle, |-\rangle)$ are bases of \mathbb{C}^2)
• EPR: $\frac{|00\rangle + |11\rangle}{\sqrt{2}}$ is entangled
• QFT₂ $\circ | 0+\rangle = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix} \circ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{2\sqrt{2}} \begin{pmatrix} 2 \\ 1+i \\ 0 \\ 1-i \end{pmatrix} | \frac{|00\rangle}{|11\rangle}$

measurement ightarrow 50% $\left|00
ight
angle$, 25% $\left|01
ight
angle$, 25% $\left|11
ight
angle$

Plan

Introduction

Quantum Circuits Gates and Processes General Results

3 ZX-Calculus

The Diagrams Equational Theory-ies Completeness

4 Applications and Conclusion

Quantum Circuits

Unitarity \Rightarrow reversibility

Quantum Circuits

Quantum Circuits

Quantum Circuits

Renaud Vilmart

Example of a Quantum Circuit

Example: Teleportation

Usual Scheme

Deferred Measurement Principle¹

Any measurement can be "pushed" to the very end of the procedure, without affecting the outcome.

¹Nielsen, Chuang, Quantum Computation and Quantum Information

Usual Scheme

Deferred Measurement Principle¹

Any measurement can be "pushed" to the very end of the procedure, without affecting the outcome.

Usual scheme for quantum computing:

- Initialise register of qubits
- 2 Apply unitary gates
- 8 Measure qubits

¹Nielsen, Chuang, *Quantum Computation and Quantum Information*

Theorem : Universality²

The gate set $\{H, Z(\alpha), CX\}_{\alpha \in \mathbb{R}}$ is universal.

Quantum Circuits

²[Barenco *et al.*'95]

³Gottesman-Knill theorem, [Gottesman'98]

⁴[Boykin, Mor, Pulver, Roychowdhury, Vatan' 00]

⁵Solovay-Kitaev theorem, [Kitaev'97]

Theorem : Universality²

The gate set $\{H, Z(\alpha), CX\}_{\alpha \in \mathbb{R}}$ is universal.

- $Z(\alpha) \Rightarrow$ infinite (uncountable) family of gates
 - \Rightarrow bad for analysis and implementability

Quantum Circuits

²[Barenco *et al.*'95]

³Gottesman-Knill theorem, [Gottesman'98]

⁴[Boykin, Mor, Pulver, Roychowdhury, Vatan' 00]

⁵Solovay-Kitaev theorem, [Kitaev'97]

Theorem : Universality²

The gate set $\{H, Z(\alpha), CX\}_{\alpha \in \mathbb{R}}$ is universal.

- $Z(lpha) \; \Rightarrow \;$ infinite (uncountable) family of gates
 - \Rightarrow bad for analysis and implementability
 - Clifford fragment : $\alpha \in \frac{\pi}{2}\mathbb{Z}$
 - not universal
 - efficiently simulable on a classical computer³

²[Barenco *et al.*'95]

³Gottesman-Knill theorem, [Gottesman'98]

⁴[Boykin, Mor, Pulver, Roychowdhury, Vatan' 00]

⁵Solovay-Kitaev theorem, [Kitaev'97]

Theorem : Universality²

The gate set $\{H, Z(\alpha), CX\}_{\alpha \in \mathbb{R}}$ is universal.

- $Z(\alpha) \Rightarrow$ infinite (uncountable) family of gates
 - \Rightarrow bad for analysis and implementability
 - Clifford fragment : $\alpha \in \frac{\pi}{2}\mathbb{Z}$
 - not universal
 - efficiently simulable on a classical computer³
 - Clifford+*T* fragment : $\alpha \in \frac{\pi}{4}\mathbb{Z}$
 - approx. universal⁴, with efficient approximation⁵

²[Barenco et al.'95]

³Gottesman-Knill theorem, [Gottesman'98]

⁴[Boykin, Mor, Pulver, Roychowdhury, Vatan' 00]

⁵Solovay-Kitaev theorem, [Kitaev'97]

Example: [Grover'96]

Classically check the result, and repeat if fail \Rightarrow Quantum part is only a subroutine

Example: [Grover'96]

Classically check the result, and repeat if fail \Rightarrow Quantum part is only a subroutine Algo in $O(\sqrt{2^N})$ vs. $O(2^N)$ classically

Problem of circuit equivalence

Do two given circuits implement the same operator?

Problem of circuit equivalence

Do two given circuits implement the same operator?

• Decidable: compute the matrices!

Problem of circuit equivalence

Do two given circuits implement the same operator?

- Decidable: compute the matrices!
- But hard: QMA-hard (quantum equivalent of NP-hard)

Problem of circuit equivalence

Do two given circuits implement the same operator?

- Decidable: compute the matrices!
- But hard: QMA-hard (quantum equivalent of NP-hard)
- Other (better?) idea: reason graphically

 \Rightarrow equational theory (e.g. -H - H - = ----)

Problem of circuit equivalence

Do two given circuits implement the same operator?

- Decidable: compute the matrices!
- But hard: QMA-hard (quantum equivalent of NP-hard)
- Other (better?) idea: reason graphically
 - \Rightarrow equational theory (e.g. -H H = ----)

New problem: Completeness

Do we have enough axioms in the equational theory?

Problem of circuit equivalence

Do two given circuits implement the same operator?

- Decidable: compute the matrices!
- But hard: QMA-hard (quantum equivalent of NP-hard)
- Other (better?) idea: reason graphically
 - \Rightarrow equational theory (e.g. -H H = ----)

New problem: Completeness

Do we have enough axioms in the equational theory?

- 1-qubit Clifford+T fragment [Backens'14]
- Clifford fragment [Selinger'15]

- {CNot, T} [Amy,Chen,Ross'18]
- approx. universal fragment: open

Problem of circuit equivalence

Do two given circuits implement the same operator?

- Decidable: compute the matrices!
- But hard: QMA-hard (quantum equivalent of NP-hard)
- Other (better?) idea: reason graphically
 - \Rightarrow equational theory (e.g. -H H = -----))

New problem: Completeness

Do we have enough axioms in the equational theory?

- 1-qubit Clifford+T fragment [Backens'14]
- Clifford fragment [Selinger'15]
- What if we dropped the unitarity constraint?

- {CNot, T} [Amy,Chen,Ross'18]
- approx. universal fragment: open

Plan

Introduction

Quantum Circuits Gates and Processes General Results

3 ZX-Calculus

The Diagrams Equational Theory·ies Completeness

4 Applications and Conclusion

• Was introduced by Coecke and Duncan in 2008

- Was introduced by Coecke and Duncan in 2008
- Is part of the Categorical Quantum Mechanics program (Abramsky&Coecke'04)

- Was introduced by Coecke and Duncan in 2008
- Is part of the Categorical Quantum Mechanics program (Abramsky&Coecke'04)
- Manipulates string diagrams e.g.

- Was introduced by Coecke and Duncan in 2008
- Is part of the Categorical Quantum Mechanics program (Abramsky&Coecke'04)
- Manipulates string diagrams e.g.

• Describes complementary Frobenius algebras

- Was introduced by Coecke and Duncan in 2008
- Is part of the Categorical Quantum Mechanics program (Abramsky&Coecke'04)
- Manipulates string diagrams e.g.
- Describes complementary Frobenius algebras
- Has a powerful equational theory e.g. $\mathbf{P}_{\mathbf{q}} = \mathbf{P}_{\mathbf{q}}$

- Was introduced by Coecke and Duncan in 2008
- Is part of the Categorical Quantum Mechanics program (Abramsky&Coecke'04)
- Manipulates string diagrams e.g.
- Describes complementary Frobenius algebras
- Has a powerful equational theory e.g.
- Represents quantum circuits and more

ZX-Calculus [Coecke, Duncan'08] in Short

ZX-Calculus [Coecke, Duncan'08] in Short

ZX-Calculus [Coecke, Duncan'08] in Short

Quantum Circuits to ZX-Diagrams

Quantum Circuits to ZX-Diagrams

Quantum Circuits to ZX-Diagrams

Expressiveness

Theorem (Universality)

We can represent any quantum operator using ZX-diagrams:

$$\forall f: \mathbb{C}^{2^n} \to \mathbb{C}^{2^m}, \ \exists \boxed{\begin{array}{c} D \\ \hline m \end{array}} \in \mathbf{ZX}, \ \boxed{\begin{bmatrix} 1 & \ddots & 1 \\ D \\ \hline & \ddots & m \end{bmatrix}} = f$$

Expressiveness

Theorem (Universality)

We can represent any quantum operator using ZX-diagrams:

$$\forall f: \mathbb{C}^{2^n} \to \mathbb{C}^{2^m}, \ \exists \boxed{\begin{array}{c} D \\ \hline m \end{array}} \in \mathbf{Z}\mathbf{X}, \ \left[\boxed{\begin{array}{c} | \begin{array}{c} n \\ \hline D \\ \hline m \end{array}} \right] = f$$

П

= f

if
$$f: \mathbb{C}^2 \to \mathbb{C}^2, \ \exists \alpha_i,$$

П

L

E.g.

Only Connectivity Matters

ZX-diagrams can be seen as open graphs. Any graph isomorphism is a valid derivation in the equational theories.

ZX-Calculus

Renaud Vilmart

Only Connectivity Matters

ZX-diagrams can be seen as open graphs. Any graph isomorphism is a valid derivation in the equational theories.

ZX-Calculus

Equational Theory

Equational Theory

We write $ZX \vdash D_1 = D_2$. Every colour-swapped rule holds.

ZX-Calculus

|19)(31|

rotation of angle
$$0 \to \Phi$$
 $(\overline{\overline{I}_g}) = (\overline{\overline{I}_r}) + \overline{\overline{I}_r}$ rotation of angle 0

Understanding the Rules: Euler Angles

Rotations in \mathbb{R}^3 :

$$\forall \theta, \exists \alpha_i, R_?(\theta) = R_x(\alpha_3) \circ R_y(\alpha_2) \circ R_x(\alpha_1)$$

Understanding the Rules: Euler Angles

Rotations in \mathbb{R}^3 :

$$\forall \theta, \exists \alpha_i, R_?(\theta) = R_x(\alpha_3) \circ R_y(\alpha_2) \circ R_x(\alpha_1)$$

Understanding the Rules: Euler Angles

Rotations in \mathbb{R}^3 :

$$\forall \theta, \exists \alpha_i, R_?(\theta) = R_x(\alpha_3) \circ R_y(\alpha_2) \circ R_x(\alpha_1)$$

Rotations in \mathbb{R}^3 :

$$\forall \theta, \exists \alpha_i, R_?(\theta) = R_x(\alpha_3) \circ R_y(\alpha_2) \circ R_x(\alpha_1)$$

Rotations in \mathbb{R}^3 :

$$\forall \theta, \exists \alpha_i, R_?(\theta) = R_x(\alpha_3) \circ R_y(\alpha_2) \circ R_x(\alpha_1)$$

Rotations in \mathbb{R}^3 :

$$\forall \theta, \exists \alpha_i, R_?(\theta) = R_x(\alpha_3) \circ R_y(\alpha_2) \circ R_x(\alpha_1)$$

Rotations in \mathbb{R}^3 :

$$\forall \theta, \exists \alpha_i, R_?(\theta) = R_x(\alpha_3) \circ R_y(\alpha_2) \circ R_x(\alpha_1)$$

Rotations in \mathbb{R}^3 :

$$\forall \theta, \exists \alpha_i, R_?(\theta) = R_x(\alpha_3) \circ R_y(\alpha_2) \circ R_x(\alpha_1)$$

Rotations in \mathbb{R}^3 :

$$\forall \theta, \exists \alpha_i, R_?(\theta) = R_x(\alpha_3) \circ R_y(\alpha_2) \circ R_x(\alpha_1)$$

$$\begin{array}{c} & & & & & \\ & & \alpha_1 & & \\ & & \alpha_2 & = & & \\ & & & \beta_2 & \\ & & & \beta_3 & \\ & & & & \beta_3 \end{array} \text{ with } \beta_i = f(\alpha_i)$$

Rotations in \mathbb{R}^3 :

$$\forall \theta, \exists \alpha_i, R_?(\theta) = R_x(\alpha_3) \circ R_y(\alpha_2) \circ R_x(\alpha_1)$$

Also true for U(2) i.e. any 1-qubit unitary can be decomposed as:

$$\begin{array}{c} & \alpha_1 \\ \bullet \alpha_2 \\ \bullet \alpha_3 \end{array} = \begin{array}{c} & \theta_{\beta_1} \\ & \theta_{\beta_2} \\ & \theta_{\beta_3} \end{array} \text{ with } \beta_i = f(\alpha_i)$$

represents a 1-qubit unitary:

Rotations in \mathbb{R}^3 :

$$\forall \theta, \exists \alpha_i, R_?(\theta) = R_x(\alpha_3) \circ R_y(\alpha_2) \circ R_x(\alpha_1)$$

Equational Theory

The EPR state: $\frac{|00\rangle + |11\rangle}{\sqrt{2}}$

The EPR state: $\frac{|00\rangle + |11\rangle}{\sqrt{2}}$

The EPR state: $\frac{|00\rangle + |11\rangle}{\sqrt{2}}$

Completeness

Theorem [V.'19]

The language is *complete*:

$$\forall D_1, D_2 \in \mathbf{ZX}, \ \llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket \iff \mathsf{ZX} \vdash D_1 = D_2$$

Completeness

Theorem [V.'19]

The language is *complete*:

$$\forall D_1, D_2 \in \mathbf{ZX}, \ \llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket \iff \mathsf{ZX} \vdash D_1 = D_2$$

Previous/other completeness results:

- $\frac{\pi}{2}$ -fragment [Backens'14]
- π -fragment [Duncan,Perdrix'14]
- 1-qubit $\frac{\pi}{4}$ -fragment [Backens'14]
- $\frac{\pi}{4}$ -fragment [Jeandel,Perdrix,V.'18]
- full ZX (modified) [Hadzihasanovic,Ng,Wang'18]
- full ZX [Jeandel,Perdrix,V.'18]

• Main idea: notion of controlled state:

• Main idea: notion of controlled state:

$$\Lambda |\psi\rangle := \sqrt{2}^{n} |+^{n}\rangle\langle 0| + |\psi\rangle\langle 1| = \begin{pmatrix} 1 & \psi_{0} \\ \vdots & \vdots \\ 1 & \psi_{2^{n}-1} \end{pmatrix} \text{ i.e.:}$$

.

- Base case: controlled scalar: $\Lambda x = \langle 0 | + x \langle 1 | = \begin{pmatrix} 1 & x \end{pmatrix}$

Constructions on Controlled states

Constructions on Controlled states

The Normal Form

- Generators can be put in NF
- Compositions of states in NF can be put in NF
- Completeness on controlled scalars

 \downarrow Completeness!

Plan

1 Introduction

- Quantum Circuits Gates and Processes General Results
- 3 ZX-Calculus The Diagrams Equational Theory Completeness

4 Applications and Conclusion

Applications

Applications and Conclusion

Renaud Vilmart

January 19th, 2021

|30)(31|

Applications

Applications and Conclusion

Renaud Vilmart

January 19th, 2021

|30)(31|
Applications

30 \(31 |

• Graphical language

- Graphical language
 - visualises information flow

- Graphical language
 - visualises information flow
 - laxer than circuits

- Graphical language
 - visualises information flow
 - laxer than circuits
 - powerful & intuitive equational theory

- Graphical language
 - visualises information flow
 - laxer than circuits
 - powerful & intuitive equational theory
- Universal

- Graphical language
 - visualises information flow
 - laxer than circuits
 - powerful & intuitive equational theory
- Universal
- Several completeness results

- Graphical language
 - visualises information flow
 - laxer than circuits
 - powerful & intuitive equational theory
- Universal
- Several completeness results
- Cousin languages ZW and ZH

- Graphical language
 - visualises information flow
 - laxer than circuits
 - powerful & intuitive equational theory
- Universal
- Several completeness results
- Cousin languages ZW and ZH
- Unifies different models of quantum computation

- Graphical language
 - visualises information flow
 - laxer than circuits
 - powerful & intuitive equational theory
- Universal
- Several completeness results
- Cousin languages ZW and ZH
- Unifies different models of quantum computation
 - Gaining traction as the default language for describing quantum processes

- Graphical language
 - visualises information flow
 - laxer than circuits
 - powerful & intuitive equational theory
- Universal
- Several completeness results
- Cousin languages ZW and ZH
- Unifies different models of quantum computation
 - Gaining traction as the default language for describing quantum processes
- Used for optimisation (PyZX)

- Graphical language
 - visualises information flow
 - laxer than circuits
 - powerful & intuitive equational theory
- Universal
- Several completeness results
- Cousin languages ZW and ZH
- Unifies different models of quantum computation
 - Gaining traction as the default language for describing quantum processes
- Used for optimisation (PyZX)
- Used for verification (Quantomatic)