Differential algebra 000000000 The fundamental theorem 0000 00000000 0000

The Fundamental Theorem of Tropical Partial Differential Algebraic Geometry

Mercedes Haiech

26 janvier 2021

Université de Rennes 1, France

IntroductionDifferential algebra000000000000

The fundamental theorem 0000 00000000 0000 Purpose of the presentation : present the Fundamental Theorem of Tropical (Partial) Differential Algebraic Geometry. This work is at the intersection of differential algebra and tropical geometry.

Differential algebra 000000000 The fundamental theorem 0000 00000000 0000 Basic question : Given a ODE or PDE over a field k of characteristic zero, we want to have informations about the solutions (in the formal series ring k[[t]]) of this differential equation.

Basic question : Given a ODE or PDE over a field k of characteristic zero, we want to have informations about the solutions (in the formal series ring k[[t]]) of this differential equation.

It is known that for PDE such solutions can be impossible to compute.

[DL84] thm 4.11

There does not exist an algorithm to decide whether a linear PDE has a power series solution in $\mathbf{C}[[t_1, \dots, t_r]]$ (for r large enough, say $r \geq 9$).

Differential algebra

Differential algebra

The fundamental theorem 0000 00000000 0000 The basic idea of differential algebra is the following association Unknown function y and its derivatives $\langle - \rangle$ variables of a certain polynomial ring.

Differential algebra 00000000 The fundamental theorem 0000 00000000 0000 Partial fundamental theorem 0000 000000 0000000

The basic idea of differential algebra is the following association Unknown function y and its derivatives $\langle - \rangle$ variables of a certain polynomial ring.

The ring we are going to work with is the following one :

 $k[[t_1, \cdots, t_m]]\{y_1, \cdots, y_n\} = k[[t_1, \cdots, t_m]][y_{i,J} \mid 1 \le i \le n, J \in \mathbf{N}^m]$

where $k[[t_1, \cdots, t_m]]$ is to understand as a coefficient ring.

This ring is called the ring of differential polynomials.

Introduction 000	Differential algebra co⊕cococo	The fundamental theorem 0000 00000000 0000	Partial fundamental theorem 0000 000000 0000000
---------------------	-----------------------------------	---	--

Examples

- 1. If F = y' y is an ODE with coefficients in k, the associated differential polynomial is $y_1 y_0$.
- 2. If $F = t_1 \frac{\partial^2 y}{\partial t_1 \partial t_2} + t_2 \frac{\partial y}{\partial t_2} + y$ with coefficients in $k[[t_1, t_2]]$ then the associated differential polynomial is $t_1 y_{1,1} + t_2 y_{0,1} + y_{0,0}$.

Introduction Differential algebra oco

Partial fundamental theorem 0000 000000 0000000

We endow the ring $k[[t_1, \dots, t_m]]\{y_1, \dots, y_n\}$ with one or many derivations.

Derivations

Let $(R, +, \cdot)$ be a ring. We say that $\delta \colon R \to R$ is a derivation is δ is linear for + and verifies

$$\delta(ab) = a\delta(b) + \delta(a)b$$

for $a, b \in R$.

We endow the ring $k[[t_1, \dots, t_m]]\{y_1, \dots, y_n\}$ with one or many derivations.

Derivations

Let $(R, +, \cdot)$ be a ring. We say that $\delta \colon R \to R$ is a derivation is δ is linear for + and verifies

$$\delta(ab) = a\delta(b) + \delta(a)b$$

for $a, b \in R$.

Examples

1. The zero derivation on ${\cal R}$

 Differential algebra
 The fundamental theorem
 Partial fundamental theorem

 000000000
 0000
 0000

 000000000
 00000
 00000

We endow the ring $k[[t_1, \dots, t_m]]\{y_1, \dots, y_n\}$ with one or many derivations.

Derivations

Let $(R, +, \cdot)$ be a ring. We say that $\delta \colon R \to R$ is a derivation is δ is linear for + and verifies

$$\delta(ab) = a\delta(b) + \delta(a)b$$

for $a, b \in R$.

Examples

- 1. The zero derivation on ${\cal R}$
- 2. On $k[[t_1, \dots, t_m]]$ the partial derivation ∂_{t_i} with respect to t_i .

Introduction	Differential algebra	The fundamental theorem	Partial fundamental theorem
000	00000000	0000 00000000 0000	0000 00000 0000000

Let $m \in \mathbf{N}$. We consider the ring

$$R_{m,n} = k[[t_1, \cdots, t_m]][y_{i,J} \mid 1 \le i \le n, J \in \mathbf{N}^m]$$

which can be denoted $k[[t_1, \cdots, t_m]]\{y_1, \cdots, y_n\}.$

Derivations on $R_{m,n}$ Let's define $D = \{\delta_1, \dots, \delta_m\}$ derivations on $R_{m,n}$ such that:

Introduction	Differential algebra	The fundamental theorem	Partial fundamental theorem
000	00000000	0000 00000000 0000	0000 00000 0000000

Let $m \in \mathbf{N}$. We consider the ring

$$R_{m,n} = k[[t_1, \cdots, t_m]][y_{i,J} \mid 1 \le i \le n, J \in \mathbf{N}^m]$$

which can be denoted $k[[t_1, \cdots, t_m]]\{y_1, \cdots, y_n\}.$

Derivations on $R_{m,n}$ Let's define $D = \{\delta_1, \dots, \delta_m\}$ derivations on $R_{m,n}$ such that:

1. δ_i extend ∂_{t_i}

Introduction	Differential algebra	The fundamental theorem	Partial fundamental theorem
000	00000000	0000 00000000 0000	0000 00000 0000000

Let $m \in \mathbf{N}$. We consider the ring

$$R_{m,n} = k[[t_1, \cdots, t_m]][y_{i,J} \mid 1 \le i \le n, J \in \mathbf{N}^m]$$

which can be denoted $k[[t_1, \cdots, t_m]]\{y_1, \cdots, y_n\}$.

Derivations on $R_{m,n}$ Let's define $D = \{\delta_1, \dots, \delta_m\}$ derivations on $R_{m,n}$ such that:

- 1. δ_i extend ∂_{t_i}
- 2. $\delta_i(y_{j,J}) = y_{j,J+e_i}$ where e_i stands for $(0, \dots, 1, \dots, 0)$ where the 1 is at the *i*th position.

Introduction	Differential algebra	The fundamental th
000	00000000	0000

Partial fundamental theorem 0000 000000 0000000

More generally if $I = (i_1, \cdots, i_m) \in \mathbf{N}^m$, we denote

$$D(I)(y_{i,J}) := \delta_1^{i_1} \cdots \delta_m^{i_m}(y_{i,J}) = y_{i,J+I}$$

Study object : the differential ring

 $R_{m,n} = k[[t_1, \cdots, t_m]][y_{i,J} \mid 1 \le i \le n, J \in \mathbf{N}^m]$

with the derivations $D = \{\delta_1, \cdots, \delta_m\}.$

Introduction	Differential algebra	The fundamental theorem	Partial fundamental t
000	000000000	0000	0000
		00000000	000000

Let k be a field of characteristic zero. Let $R_{m,n}$ with m derivations $D = \{\delta_1, \dots, \delta_m\}$ previously defined.

Let I be an (algebraic) ideal of $R_{m,n}$.

Intro	duction	Differential algebra	The fundamental theorem	Partial fundamental theorem
000		000000000	0000 0000000 0000	0000 00000 0000000

Let k be a field of characteristic zero. Let $R_{m,n}$ with m derivations $D = \{\delta_1, \dots, \delta_m\}$ previously defined.

Let I be an (algebraic) ideal of $R_{m,n}$.

We say that I is a differential ideal if for every $a \in I$ and for every $1 \leq i \leq n$ we have $\delta_i(a) \in I$.

Introduction	Differential algebra	The fundamental theorem	Partial fundamental theorem
000	000000000	0000 00000000 0000	0000 00000 0000000

Let

$$F \in k[[t_1, \cdots, t_m]][y_{i,J} \mid 1 \le i \le n, J \in \mathbf{N}^m]$$

We say that $\gamma = (\gamma_1, \cdots, \gamma_n) \in k[[t_1, \cdots, t_m]]^n$ is a solution of F if

$$F((D(J)(\gamma_i)_{1 \le i \le n, J \in \mathbf{N}^m}) = 0.$$

We will denote it $F(\gamma) = 0$.

Introduction	Differential algebra	The fundamental theorem	Partial fundamental theorem
000	00000000	0000 00000000 0000	0000 00000 000000

Let
$$I \subset k[[t_1, \dots, t_m]][y_{i,J} \mid 1 \leq i \leq n, J \in \mathbb{N}^m]$$
 be a differential ideal. We denote by Sol(I) the set

$$\{\gamma \in k[[t_1, \cdots, t_m]]^n \mid \forall F \in I, F(\gamma) = 0\}.$$

The fundamental theorem

Differential algebra 000000000 The fundamental theorem $0 \oplus 00$ $0 \oplus 00 \oplus 000$ $0 \oplus 000 \oplus 0000$ The fundamental theorem of tropical differential algebraic geometry is originally a question that arises in an article of D. GRIGORIEV ([Gri17])

The theorem has been proven in the ordinary case (only 1 derivative) in [AGT16] by F. AROCA, C. GARAY-LÓPEZ & Z. TOGHANI.

Then 4 years later the generalization for PDE was proven in $[FGLH^+20]$.

Differential algebra 000000000 The fundamental theorem $0 \oplus 00$ $0 \oplus 00 \oplus 000$ $0 \oplus 000 \oplus 0000$ Partial fundamental theorem 0000 000000 0000000

The fundamental theorem of tropical differential algebraic geometry is originally a question that arises in an article of D. GRIGORIEV ([Gri17])

The theorem has been proven in the ordinary case (only 1 derivative) in [AGT16] by F. AROCA, C. GARAY-LÓPEZ & Z. TOGHANI.

Then 4 years later the generalization for PDE was proven in [FGLH⁺20].

In this section we are first going to state the theorem for the ordinary case.

Differential algebra

The fundamental theorem $\begin{array}{c} 0000\\ 00000000\\ 000000\end{array}$

Partial fundamental theorem 0000 000000 0000000

As said in the introduction the solutions of a differential system can be hard if not impossible to compute.

Differential algebra 000000000 The fundamental theorem $\begin{array}{c} 0000\\ 00000000\\ 0000\end{array}$

Partial fundamental theorem 0000 000000 0000000

As said in the introduction the solutions of a differential system can be hard if not impossible to compute.

Let $\gamma = \sum_{i \ge 0} a_i t^i \in k[[t]]$. We call the support of γ the subset of $\mathcal{P}(\mathbf{N})$

$$\operatorname{Supp}(\gamma) = \{i \in \mathbf{N} \mid a_i \neq 0\}.$$

Example If $\gamma = t^5 + t + 3$ then $\operatorname{Supp}(\gamma) = \{5, 1, 0\}.$

Differential algebra

The fundamental theorem $\begin{array}{c} 0000\\ 000000000\\ 00000\end{array}$

Partial fundamental theorem 0000 000000 0000000

If I is a differential ideal of $k[[t]]\{y\}$, we denote

$\operatorname{Supp}(\operatorname{Sol}(I)) = \{\operatorname{Supp}(\gamma) \mid \gamma \in \operatorname{Sol}(I)\}.$

Differential algebra 000000000 The fundamental theorem $\begin{array}{c} 0000\\ 000000000\\ 00000\end{array}$

Partial fundamental theorem 0000 000000 0000000

If I is a differential ideal of $k[[t]]\{y\}$, we denote

 $\operatorname{Supp}(\operatorname{Sol}(I)) = \{\operatorname{Supp}(\gamma) \mid \gamma \in \operatorname{Sol}(I)\}.$

The goal is to understand Supp(Sol(I)) by looking at a certain system of tropical equations.

ntroduction	Differential algebra	The fundamental theorem	Partial fundamental theorem
000	00000000	0000 •0000000 0000	0000 00000 0000000

Tropical system

Let $F = \sum_{m \in \mathbb{N}} a_m E_m \in k[[t]]\{y\}$ with $a_m \in k[[t]]$ and E_m a monomial in y and its derivative. More precisely

$$E_m = \prod_{i \in \mathbf{N}} y_i^{m_i}.$$

Then the tropicalization of F is

$$\operatorname{trop}(F) = \sum_{m \in \mathbf{N}} \min \operatorname{Supp}(a_m) E_m.$$

ntroduction	Differential algebra	The fundamental theorem	Partial fundamental theorem
000	00000000	0000 •0000000 0000	0000 00000 0000000

Tropical system

Let $F = \sum_{m \in \mathbb{N}} a_m E_m \in k[[t]]\{y\}$ with $a_m \in k[[t]]$ and E_m a monomial in y and its derivative. More precisely

$$E_m = \prod_{i \in \mathbf{N}} y_i^{m_i}.$$

Then the tropicalization of F is

$$\operatorname{trop}(F) = \sum_{m \in \mathbf{N}} \min \operatorname{Supp}(a_m) E_m.$$

Here the tropicalization is a formal operation. Only the set where the coefficients of F live changes.

Introduction Differential algebra 000 00000000 Partial fundamental theorem 0000 000000 0000000

Tropical system

A tropical polynomial $\operatorname{trop}(F)$ can be seen as an evaluation map

 $\operatorname{trop}(F)\colon \mathcal{P}(\mathbf{N})\to \mathcal{P}(\mathbf{N}).$

The operations + and \cdot are replace in $\mathcal{P}(\mathbf{N})$ by min and +. More precisely for $S \in \mathcal{P}(\mathbf{N})$ we define

 $y_i(S) = \min\{k - i \mid k \in S, k - i \ge 0\} = \min(S - i)_+$

Introduction Different 000 0000000

Differential algebra 00000000 Partial fundamental theorem 0000 000000 0000000

Tropical system

A tropical polynomial $\operatorname{trop}(F)$ can be seen as an evaluation map

 $\operatorname{trop}(F)\colon \mathcal{P}(\mathbf{N})\to \mathcal{P}(\mathbf{N}).$

The operations + and \cdot are replace in $\mathcal{P}(\mathbf{N})$ by min and +.

More precisely for $S \in \mathcal{P}(\mathbf{N})$ we define

$$y_i(S) = \min\{k - i \mid k \in S, k - i \ge 0\} = \min(S - i)_+$$

Example If $S = \{0, 1, 5, 8, 9\}$ then $y_3(S) = \min\{-3, -2, 2, 5, 6\}_+ = 2$

Introduction	
000	

Differential algebra 000000000 Partial fundamental theorem 0000 00000 000000

Tropical system

If
$$F = \sum_{m \in \mathbf{N}} a_m E_m \in k[[t]]\{y\}$$
 with $E_m = \prod_{i \in \mathbf{N}} y_i^{m_i}$ and $S \in \mathcal{P}(\mathbf{N})$ then

$$E_m(S) = \min \sum_{i \in \mathbf{N}} m_i \cdot y_i(S)$$

and

$$\operatorname{trop}(F)(S) = \min_{m \in \mathbf{N}} \{\min \operatorname{Supp}(a_m) + E_m(S)\}$$

Introduction	1
000	

Differential algebra 000000000 Partial fundamental theorem 0000 000000 0000000

Tropical system

If
$$F = \sum_{m \in \mathbf{N}} a_m E_m \in k[[t]]\{y\}$$
 with $E_m = \prod_{i \in \mathbf{N}} y_i^{m_i}$ and $S \in \mathcal{P}(\mathbf{N})$ then

$$E_m(S) = \min \sum_{i \in \mathbf{N}} m_i \cdot y_i(S)$$

and

$$\operatorname{trop}(F)(S) = \min_{m \in \mathbf{N}} \{\min \operatorname{Supp}(a_m) + E_m(S)\}$$

Example If $S = \{0, 1, 2, 4\}$ then $(y_1^2 - ty_0)(S) = \min(2\min\{-1, 0, 1, 3\}_+, 1 + \min\{0, 1, 2, 4\}) = 0.$

Introduction	Differential algebra	The fundamental theorem	Partial fundamental theorem
000	00000000	0000 0000000 0000	0000 00000 0000000
Transiant metam			

Tropical system

Let $E_m = \prod_{i \in \mathbf{N}} y_i^{m_i}$ and $S \in \mathcal{P}(\mathbf{N})$. Let $\varphi \in k[[t]]$ be a formal serie of support S.

Property

 $\operatorname{trop}(E_m)(S) = \operatorname{Supp}(E_m(\varphi)).$

Differential algebra

The fundamental theorem 00000000000000000 Partial fundamental theorem 0000 000000 0000000

Tropical system

Remark If $F \in k[[t]]\{y\}$, in general

 $\operatorname{trop}(F)(S) \neq \operatorname{Supp}(F(\varphi)).$

Example If $F = y_1 - y_0$, $S = \{0, 1, 2, \dots\}$ and $\varphi = e^t$ then $\operatorname{trop}(F)(S) = 0$

but

$$\operatorname{Supp}(F(\varphi)) = \operatorname{Supp}(0) = \emptyset.$$

ntroduction	Differential algebra	The fundamental theorem	Partial fundamental theorem
000	00000000		0000 00000 0000000

Tropical system

Solution of a tropical equation Let $F = \sum_{m \in \mathbb{N}} a_m E_m \in k[[t]]\{y\}$ and $S \in \mathcal{P}(\mathbb{N})$. We say that S is a solution of trop(F) if trop $(F)(S) = \emptyset$ or if there exists $m_1 \neq m_2 \in \mathbb{N}$ such that

$$\operatorname{trop}(F)(S) = \operatorname{trop}(a_{m_1} E_{m_1})(S) = \operatorname{trop}(a_{m_2} E_{m_2})(S).$$

To sum up : S is a solution if the min is obtained at least twice (or comes from at least two different monomials).

Differential algebra

The fundamental theorem 0000000000000000000 Partial fundamental theorem 0000 000000 0000000

Tropical system

Examples

1. If
$$F = y_1 - y_0$$
, $S = \{0, 1, 2, \dots\}$ then

$$\operatorname{trop}(F)(S) = \min(0,0) = 0$$

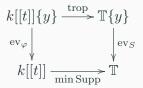
and S is a solution of F.

2. If $F = y_3$ and $S = \{0, 1\}$ then $\operatorname{trop}(F)(S) = \emptyset$ and S is a solution of F.

Introduction 000	Differential algebra 000000000	The fundamental theorem $0000 \\ 0000000 \\ 000000 $	Partial fundamental theorem 0000 000000 0000000
Tropical system			

obicai system

Let's denote \mathbb{T} the semi-ring $(\mathbf{N}, \min, +)$. And let's $\varphi \in k[[t]]$ of support S



Warning : this diagram is, in general, not commutative

Differential algebra 000000000 The fundamental theorem 0000000000000000 Partial fundamental theorem 0000 000000 0000000

Statement of the fundamental theorem

Let k be an uncountable field, algebraically closed and of characteristic zero. Let I be a differential ideal of $k[[t]]\{y\}$.

Aroca, Garay-López, Toghani The fundamental theorem of tropical differential algebraic geometry is the following statement:

 $\operatorname{Supp}(\operatorname{Sol}(I)) = \operatorname{Sol}(\operatorname{trop}(I))$

Differential algebra 000000000 The fundamental theorem 00000000000000000 Partial fundamental theorem 0000 000000 0000000

Statement of the fundamental theorem

Sketch of the proof:

• The inclusion $\text{Supp}(\text{Sol}(I)) \subset \text{Sol}(\text{trop}(I))$ is the "easy direction".

Differential algebra 000000000 The fundamental theorem 00000000000000000 Partial fundamental theorem 0000 000000 0000000

Statement of the fundamental theorem

Sketch of the proof:

• The inclusion $\text{Supp}(\text{Sol}(I)) \subset \text{Sol}(\text{trop}(I))$ is the "easy direction".

Let $\varphi \in \text{Sol}(I)$ and $F \in I$ with $F = \sum_{m \in \mathbb{N}} a_m E_m$. Let's consider $a_{m_1} E_{m_1}$ such that $\min(\text{Supp}(a_{m_1} E_{m_1}(\varphi))) = \min_{m \in \mathbb{N}}(\min(\text{Supp}(a_m E_m(\varphi)))).$ Since $F(\varphi) = 0$ there exists $m_2 \neq m_1 \in \mathbb{N}$ such that

 $\min(\operatorname{Supp}(a_{m_1}E_{m_1}(\varphi))) = \min(\operatorname{Supp}(a_{m_2}E_{m_2}(\varphi)))$

Introduction Differential algebra 000 00000000 Partial fundamental theorem 0000 00000 000000

Statement of the fundamental theorem

Other direction #1:

- Thanks to the Taylor's formula, it can proven that finding a solution of I is the same as finding a solution of a certain J_I ideal of $k[y_0, y_1, \cdots]$ in $k^{\mathbf{N}}$.
- \bullet Let S be a support. Consider

 $V_{S,m} = \{ (x_i)_{1 \le i \le m} \in k^m \mid x_i = 0 \text{ if and only if } i \notin S \}.$

Then $\operatorname{Sol}(J_I) \cap V_{S,\infty}$ are in bijection with the solutions of I of support S.

Introduction Differential algebra 000 00000000 Partial fundamental theorem 0000 000000 0000000

Statement of the fundamental theorem

Other direction #2:

• If $\operatorname{Sol}(J_I) \cap V_{S,\infty}$ is empty, then there exists some integer m and ideal $J_{I,m}$ of $k[y_0, \dots, y_m]$ such that $\operatorname{Sol}(J_{I,m}) \cap V_{S,m}$ is empty.

• Assume that there exists no solution of I of support S. Thanks to some arguments (the Nullstenllensatz for example) it's possible to construct an element $F \in I$ such that S is not a solution of trop(F).

Partial fundamental theorem

Differential algebra

The fundamental theorem 0000 00000000 0000 Partial fundamental theorem 000 000000000

The goal is to generalize the fundamental theorem to PDE.

Differential algebra 000000000 The fundamental theorem 0000 00000000 0000 The goal is to generalize the fundamental theorem to PDE. Difficulty : The major difficulty of this generalization was to find adequate definitions for notions of tropicalization of a partial differential polynomial and evaluation of these tropicalizations.

Differential algebra 000000000 The fundamental theorem 0000 00000000 0000 Partial fundamental theorem

As we have seen before the tropicalization of a certain $F = \sum_{m \in \mathbb{N}} a_m E_m \in k[[t]]\{y\}$ consists of

$$\operatorname{trop}(F) = \sum_{m \in \mathbf{N}} \min(\operatorname{Supp}(a_m)) E_m.$$

If $a \in k[[t_1, \dots, t_m]]$ is a formal series in *m* variables then Supp $(a) \in \mathcal{P}(\mathbf{N}^m)$. In $\mathcal{P}(\mathbf{N}^m)$ the notion of min can be generalized in different ways.

Differential algebra 000000000 The fundamental theorem 0000 00000000 0000

Partial fundamental theorem

Let
$$\gamma = \sum_{(j_1, \cdots, j_m) \in \mathbf{N}^m} a_{(j_1, \cdots, j_m)} t_1^{j_1} \cdots t_m^{j_m} = \sum_{J \in \mathbf{N}^m} a_J T^J$$
, we define the

$$\operatorname{Supp}(\gamma) = \{ J \in \mathbf{N}^m \mid a_J \neq 0 \}.$$

Introduction Differential algebra 000 00000000 The fundamental theorem 0000 00000000 0000

Partial fundamental theorem

Let
$$\gamma = \sum_{(j_1, \cdots, j_m) \in \mathbf{N}^m} a_{(j_1, \cdots, j_m)} t_1^{j_1} \cdots t_m^{j_m} = \sum_{J \in \mathbf{N}^m} a_J T^J$$
, we define the

$$\operatorname{Supp}(\gamma) = \{ J \in \mathbf{N}^m \mid a_J \neq 0 \}.$$

Example

Si
$$\gamma = t_1^3 t_2^2 + t_1^4 + t_2^2$$
 alors Supp $(\gamma) = \{(3, 2), (4, 0), (0, 2)\}$

The support is now a subset of $\mathcal{P}(\mathbf{N}^m)$.

Introduction Differential algebra 000 00000000 The fundamental theorem 0000 00000000 0000 Partial fundamental theorem

Let
$$\gamma = \sum_{(j_1, \cdots, j_m) \in \mathbf{N}^m} a_{(j_1, \cdots, j_m)} t_1^{j_1} \cdots t_m^{j_m} = \sum_{J \in \mathbf{N}^m} a_J T^J$$
, we define the

$$\operatorname{Supp}(\gamma) = \{ J \in \mathbf{N}^m \mid a_J \neq 0 \}.$$

Example

Si $\gamma = t_1^3 t_2^2 + t_1^4 + t_2^2$ alors Supp $(\gamma) = \{(3, 2), (4, 0), (0, 2)\}$

The support is now a subset of $\mathcal{P}(\mathbf{N}^m)$.

As before the goal is to understand Supp(Sol(I)) where I is a differential ideal of $k[[t_1, \dots, t_m]]\{y_1, \dots, y_n\}$.

Introduction	Differential algebra	The fundamental theorem	Partial fundamental theorem
000	00000000	0000 00000000 0000	0000 •0000 000000

Tropicalization

In order to tropicalization a differential polynomial, we have to define the tropicalization of a formal serie. Let $\gamma \in k[[t_1, \cdots, t_m]]$, we define

 $\operatorname{trop}(\gamma) = \operatorname{Vert}(\operatorname{Supp}(\gamma)).$

Introduction 000	Differential algebra 000000000	The fundamental theorem 0000 00000000 0000	Partial fundamental theorem 0000 00000 0000000
Tropicalization			

opicalization

In order to tropicalization a differential polynomial, we have to define the tropicalization of a formal serie. Let $\gamma \in k[[t_1, \cdots, t_m]],$ we define

 $\operatorname{trop}(\gamma) = \operatorname{Vert}(\operatorname{Supp}(\gamma)).$

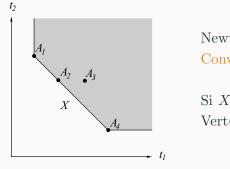
With Vert(S) the vertex of the Newton polytope associated with $S \in \mathcal{P}(\mathbf{N}^m)$.

Introduction	
000	

Differential algebra 00000000 The fundamental theorem 0000 00000000 0000 Partial fundamental theorem ○○○○ ○●○○○ ○○○○○○○

Tropicalization

Example Examples in \mathbf{N}^2 of the notion of Vert.



Newton polytope of X =Convex hull of $X + \mathbf{N}^m$

Si $X = \{A_1, A_2, A_3, A_4\}$ alors Vert $(S) = \{A_1, A_4\}$.

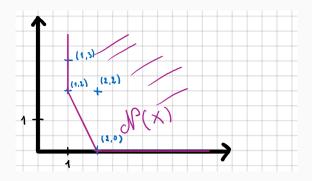
• If m = 1 then $\operatorname{Vert}(S) = \min(S)$ for $S \in \mathcal{P}(\mathbf{N})$.

Introduction	Differential algebra	The fundamental theorem	Р
000	00000000	0000	0
		0000000	0

Tropicalization

Example If $\gamma = t_1 t_2^2 + t_1^2 + t_1 t_2^3 + t_1^2 t_2^2$ then

 $\operatorname{trop}(\gamma) = \operatorname{Vert}\{(1,2) \cup (2,0) \cup (1,3) \cup (2,2)\} = \{(1,2) \cup (2,0)\}$



Introduction	Differential algebra	The fundamental theorem	Partial fundamental theorem
000	00000000	0000 0000000	0000
		0000	000000

Tropicalization

Tropicalization of differentials polynomials Let $F \in k[[t_1, \dots, t_m]]\{y\}$. If $F = \sum_M a_M E_M$ with $a_M \in k[[t_1, \dots, t_m]]$ and E_M a monomial in y and its derivative. Then

$$\operatorname{trop}(F) = \sum_{M} \operatorname{trop}(a_M) E_M.$$

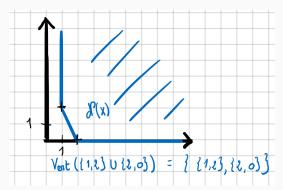
With trop $(a_M) \in \mathcal{P}(\mathbf{N}^m)$.

Introduction	Diffe
000	0000

Differential algebra 00000000 The fundamental theorem 0000 00000000 0000

Tropicalization

Example
If
$$f = (t_1 t_2^2 + t_1^2) \frac{\partial^2 y}{\partial t_1^2} \frac{\partial y}{\partial t_2} + \frac{\partial^2 y}{\partial t_1 \partial t_2}$$
 then
 $\operatorname{trop}(t_1 t_2^2 + t_1^2) = \operatorname{Vert}\{(1, 2) \cup (2, 0)\}$ et
 $\operatorname{trop}(f) = \{(1, 2), (2, 0)\} \cdot y_{2,0} y_{0,1} + \{(0, 0)\} \cdot y_{1,1}.$



Introduction	Differential algebra	The fundamental theorem	Partial fundamental theorem
000	00000000	0000	0000
		0000	000000

Let $S \in \mathcal{P}(\mathbf{N}^m)$ et $P \in R_{m,n}$.

Goal : evaluate $\operatorname{trop}(P)$ at S.

Introduction	Differential algebra	The fundamental theorem	Partial fundamental theorem
000	00000000	0000	0000
		0000	•00000

Let $S \in \mathcal{P}(\mathbf{N}^m)$ et $P \in R_{m,n}$.

Goal : evaluate $\operatorname{trop}(P)$ at S.

The operations are in $(\mathcal{P}(\mathbf{N}^m), \text{Vert}, +)$.

Introduction	Differential algebra	The fundamental theorem	Partial fundamental theorem
000	00000000	0000 00000000 0000	0000 00000 0●00000

Let $J \in \mathbf{N}^m$, we define $y_J(S) = (S - J)_+$. If $E_M = \prod_J y_J^{m_J}$, then

$$E_M(S) = \sum_J m_J \cdot y_J(S)$$

where \sum is the Minkowski sum of sets.

Examples

1. If
$$S = \{(1,0), (2,1)\}$$
 then
 $y_{(1,1)}^2(S) = 2 \cdot (\{(0,-1), (1,0)\})_+ = \{(2,0)\}.$
2. If $S = \{(0,0)\}$ then $y_{1,0}(S) = (\{(-1,0)\})_+ = \emptyset.$

Introduction	
000	

Differential algebra

The fundamental theorem 0000 00000000 0000

Partial fundamental theorem

Solutions

Let
$$S \in \mathcal{P}(\mathbf{N}^m)$$
 et $P = \sum_M a_M E_M \in R_{m,n}$.

Evaluation

$$\operatorname{trop}(P)(S) = \operatorname{Vert}\left(\bigcup_{M} (\operatorname{trop}(a_M) + E_M(S))\right)$$

Example If $S = \{(2,0), (0,2)\}$ then $(y_{1,0} + 2y_{0,1})(S) = \operatorname{Vert}(y_{1,0}(S) \cup y_{0,1}(S)) =$ $\operatorname{Vert}((S - (1,0))_+ \cup (S - (0,1))_+) = \{(1,0), (0,1)\}$

Introduction	Differential algebra	The fundamental theorem	Partial fundamental theorem
000	00000000	0000 00000000 0000	0000 00000 000000

Solutions
Let
$$S \in \mathcal{P}(\mathbf{N}^m)$$
 et $P = \sum_M a_M E_M \in R_{m,n}$. We have
 $\operatorname{trop}(P)(S) = \operatorname{Vort}\left(\left| \operatorname{trop}(a_M) + E_M(S) \right| \right)$

$$\operatorname{trop}(P)(S) = \operatorname{Vert}\left(\bigcup_{M} (\operatorname{trop}(a_M) + E_M(S))\right)$$

We say that S is a solution of $\operatorname{trop}(P)$ if, for every $A \in \operatorname{trop}(P)(S)$, there exists M_1 et M_2 such that

 $A \in \operatorname{trop}(a_{M_1} E_{M_1})(S)$

and

$$A \in \operatorname{trop}(a_{M_2} E_{M_2})(S)$$

Introduction	Differential algebra	The fundamental theorem	Partial fundamental theorem
000	00000000	0000 00000000 0000	0000 00000 0000000

Exemple
If
$$f = t_1 \frac{\partial y}{\partial t_1} + t_2 \frac{\partial y}{\partial t_2}$$
 et $S = \{(0,0), (1,1)\}.$

A formal serie of the form $\gamma = \beta + \alpha t_1 t_2$ has S as support.

Then

$$\operatorname{trop}(f) = (1,0) \cdot y_{1,0} + (0,1) \cdot y_{0,1}$$

and

$$\begin{aligned} \operatorname{trop}(f)(S) &= \operatorname{Vert} \{ (1,0) + (S - (1,0))_+ \bigcup (0,1) + (S - (0,1))_+ \} \\ &= \operatorname{Vert} \{ (1,0) + (0,1) \bigcup (0,1) + (1,0) \} \\ &= \operatorname{Vert} \{ (1,1) \bigcup (1,1) \} \\ &= \{ (1,1) \} \end{aligned}$$

Differential algebra 000000000 The fundamental theorem 0000 00000000 0000 Partial fundamental theorem

Solutions

Partial fundamental theorem

Boulier, Falkensteiner, Garay-López, H., Noordman, Toghani

Let k be an uncountable field, algebraically closed and of characteristic zero. Let I be a differential ideal of $k[[t_1, \dots, t_m]]\{y_1, \dots, y_n\}$. Then

 $\operatorname{Supp}(\operatorname{Sol}(I)) = \operatorname{Sol}(\operatorname{trop}(I)).$

	0000

Partial fundamental theorem **0000 000000** 000000●

 $\operatorname{Solutions}$

Thanks for your attention

- Fuensanta Aroca, Cristhian Garay, and Zeinab Toghani.
 The Fundamental Theorem of Tropical Differential Algebraic Geometry.
 Pacific J. Math., 283(2):257–270, 2016.
 arXiv:1510.01000v3.
- J. Denef and L. Lipshitz.
 - Power series solutions of algebraic differential equations.

Math. Ann., 267(2):213-238, 1984.

- Sebastian Falkensteiner, Cristhian Garay-López, Mercedes Haiech, Marc Paul Noordman, Zeinab Toghani, and François Boulier.
 The fundamental theorem of tropical partial
 - differential algebraic geometry, 2020.