Isogenous hyperelliptic and non-hyperelliptic Jacobians with maximal Complex Multiplication

Joint work with
S. Ionica (UPJV), and J. Sijsling (Ulm University).

Outline I

(1) The main objects.

- CM fields and their CM types.
- The Galois group of a CM field.
- Abelian varieties, and algebraic curves.
- The Jacobian of an algebraic curve.
(2) A brief introduction in Complex Multiplication (CM) Theory.
- The main idea of CM Theory.
- Principally polarized abelian varieties with CM by \mathbb{Z}_{K}.
- The construction of p.p.a.v. with CM by \mathbb{Z}_{k}.

Outline II

(3) The project.

- Motivation
- The goal.
- Main Result 1.
- Main Result 2.
- Main Result 3.
(4) The computation of the sets $\mathcal{M}_{\mathbb{Z}_{k}}$ and $\mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$.
- The sets $\mathcal{M}_{\mathbb{Z}_{K}}$ and $\mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$.
- The Shimura class group \mathcal{C}_{K} and its reflex type norm subgroup.
- The precomputation step.
- The algorithms.

The L-functions and Modular Forms Database.

The L-functions and Modular Forms Database (LMFDB).

- What is the LMFDB?
- The importance of the LMFDB in Mathematics?
- The objects in today's discussion:
- Complex Multiplication (CM) fields and their
- Galois groups.
- Algebraic curves and their
- Jacobians.

1. The objects in today's discussion

Complex Multiplication (CM) fields, and their CM types.

- A CM field K is a totally imaginary quadratic extension of a totally real number field K_{0}.
- Let L be the Galois closure of K. A CM type Φ on K (with values in L) is a subset $\Phi \subset \operatorname{Hom}(K, L)$ such that $\operatorname{Hom}(K, L)=\Phi$ $\bar{\Phi}$.
- The reflex field $K^{r} \subset L$ of (K, Φ) is the fixed field of the group $H=\left\{\sigma \in \operatorname{Gal}(L \mid \mathbb{Q}): \sigma \Phi_{L}=\Phi_{L}\right\}$.
- The reflex CM type Φ^{r} of K^{r} is induced by the CM type Φ_{L}^{-1} on L.

2. The objects in today's discussion

The Galois group of a sextic CM field.

Theorem
Let K be sextic CM field, with Galois closure L. Then $G=\operatorname{Gal}(L \mid \mathbb{Q})$ is isomorphic to one of the following groups:
(1) C_{6}.
(2) D_{6}.
(3) $C_{2}^{3} \rtimes C_{3}$.
(9) $C_{2}^{3} \rtimes S_{3}$.

3. The objects in today's discussion

- Our fields K are all algebraically closed and of characteristic zero.
- All our curves over a field K are separated and geometrically integral schemes of dimension 1 over K.
- The genus:
- $g=1$: Elliptic curves.
- $g=2$: Hyperelliptic curves.
- $g=3$: Hyperelliptic curves, and quartic plane curves.
- An abelian variety over K is an algebraic group that is geometrically integral and proper over K.

4. The objects in today's discussion

The Jacobian $\operatorname{Jac}(X)$ of a curve X over \mathbb{C}.

- We can compute the Jacobian of X in the following way:
- Let γ_{i} be a basis for the homology group $H_{1}(X, \mathbb{Z}) \cong \mathbb{Z}^{2 g}$.
- Let $\omega_{1}, \ldots, \omega_{g}$ be a basis of differential forms on X.
- Compute the vectors $\lambda_{i} \in \mathbb{C}^{g}$ for all $i=1, \ldots, 2 g$ by

$$
\left(\lambda_{i}\right)_{j}=\int_{\gamma_{j}} \omega_{i}
$$

- Then $\Lambda=\left\langle\lambda_{1}, \ldots, \lambda_{2 g}\right\rangle$ is a lattice in \mathbb{C}^{g} called the period lattice of X.
- Define

$$
\operatorname{Jac}(X)=\mathbb{C}^{g} / \Lambda
$$

1. The main idea of CM Theory.

Motivation: Is there a way to describe a general method for describing all Abelian extensions of a number field?

- The Kronecker-Weber Theorem: Any abelian extension $\mathbb{Q} \subset L$ is contained in some cyclotomic fields $\mathbb{Q}\left(\zeta_{n}\right)$ for some n, $\zeta_{n}=\exp (2 \pi i / n)$.
- Kronecker's Jugendtraum (Hilbert 12): Replacing \mathbb{Q} by a different base field K, and ζ_{n} by some „complex numbers", is there a statement that is analogous to the Kronecker-Weber Theorem?

2. The main idea of CM Theory.

The answer to Kronecker's Jugendtraum is given by:

- The theory of Complex Multiplication (CM) introduced by Shimura and Taniyama in the 1950's.
- Complete answer to Kronecker's Jugendtraum in the case of CM fields.

3. The main idea of CM Theory.

The genus one case.

Theorem (Main Theorem 1)
Let K be an imaginary quadratic field with ring of integers \mathbb{Z}_{K}, and let E be an elliptic curve over \mathbb{C} with $\operatorname{End}(E) \cong \mathbb{Z}_{k}$. Then $j(E)$ is an algebraic integer, and

$$
K(j(E))
$$

is the Hilbert class field H of K .
Theorem
If H is the Hilbert class field of K, then the Artin map $I_{K} \rightarrow \operatorname{Gal}(H \mid K)$ is surjective and induces an isomorphism

$$
C l(K) \xrightarrow{\sim} \operatorname{Gal}(H \mid K) .
$$

Principally polarized abelian abelian varieties (p.p.a.v) with CM by \mathbb{Z}_{K}.

Theorem
Simple principally polarized abelian varieties of dimension three are Jacobian varieties.

Definition

Let K be a sextic CM field. A principally polarized abelian variety A of dimension three has $C M$ by the maximal order \mathbb{Z}_{K} if $\operatorname{End}(A) \cong \mathbb{Z}_{K}$.

1. The construction of p.p.a. varieties with CM by \mathbb{Z}_{K}

The dimension one case:

- An imaginary quadratic field K with ring of integers \mathbb{Z}_{K}.
- A fractional \mathbb{Z}_{K}-ideal \mathfrak{a}.

The dimension three case:

- An sextic CM field K with ring of integers \mathbb{Z}_{K}.
- A fractional \mathbb{Z}_{K}-ideal \mathfrak{a}.

1. The construction of p.p.a. varieties with CM by \mathbb{Z}_{K}

The dimension one case:

- An imaginary quadratic field K with ring of integers \mathbb{Z}_{K}.
- A fractional \mathbb{Z}_{K}-ideal \mathfrak{a}.
- There exists a correspondence between $[\mathfrak{a}] \in C l(K)$ and lattice $\Lambda \subset \mathbb{C}$ modulo equivalence.
$\leadsto E \cong \operatorname{Jac}(E)$.

The dimension three case:

- An sextic CM field K with ring of integers \mathbb{Z}_{K}.
- A fractional \mathbb{Z}_{K}-ideal \mathfrak{a}.
- Together with a primitive CM type Φ of K, there exists correspondence between $[\mathfrak{a}] \in C l(K)$ and lattice $\Lambda=\Phi(\mathfrak{a}) \subset \mathbb{C}^{3}$ modulo equivalence.
$\leadsto A \cong \mathbb{C}^{3} / \Lambda$.

1. The construction of p.p.a. varieties with CM by \mathbb{Z}_{K}

The dimension one case:

- An imaginary quadratic field K with ring of integers \mathbb{Z}_{K}.
- A fractional \mathbb{Z}_{K}-ideal \mathfrak{a}.
- There exists a correspondence between $[\mathfrak{a}] \in C l(K)$ and lattice $\Lambda \subset \mathbb{C}$ modulo equivalence.
$\leadsto E \cong \operatorname{Jac}(E)$.

The dimension three case:

- An sextic CM field K with ring of integers \mathbb{Z}_{K}.
- A fractional \mathbb{Z}_{K}-ideal \mathfrak{a}.
- Together with a primitive CM type Φ of K, there exists correspondence between $[\mathfrak{a}] \in C l(K)$ and lattice $\Lambda=\Phi(\mathfrak{a}) \subset \mathbb{C}^{3}$ modulo equivalence.
$\leadsto A \cong \mathbb{C}^{3} / \Lambda$.

2. The construction of p.p.a. varieties with CM by \mathbb{Z}_{K}

Principal polarization in the dimension three case.

- Ket $\xi \in K$, such that $-\xi^{2}$ is totally positive in K_{0}, and $\operatorname{im}(\varphi(\xi))>0$ for all $\varphi \in \Phi$, and such that $(\xi)=\left(\mathfrak{a} \overline{\mathfrak{a}} \mathfrak{D}_{K \mid \mathbb{Q}}\right)^{-1}$.
- Then $(\Phi, \mathfrak{a}, \xi)$ gives rise to a p.p.a.v

$$
A(\mathfrak{a}, \xi) \cong\left(\mathbb{C}^{3} / \Lambda, E\right)
$$

of dimension three over \mathbb{C}, with

- Principal polarization $E(\Phi(\alpha), \Phi(\beta)):=\operatorname{Tr}_{K \mid \mathbb{Q}}(\xi \bar{\alpha} \beta)$ for $\alpha, \beta \in K$, and
- Where $A(\mathfrak{a}, \xi)$ has $C M$ by \mathbb{Z}_{K}.

Motivation.

Motivation:

- In the genus three case there are two types of curves, hyperelliptic curves, and quartic plane curves.
- By the André-Oort conjecture the number of hyperelliptic curves with CM over \mathbb{C} might be finite.

Motivation.

Motivation:

- In the genus three case there are two types of curves, hyperelliptic curves, and quartic plane curves.
- By the André-Oort conjecture the number of hyperelliptic curves with CM over \mathbb{C} might be finite.
- Is there any sextic CM field K in the LMFDB with $\mathbb{Q}(i) \notin K$, for which there exists a hyperelliptic curve whose Jacobian has primitive CM by \mathbb{Z}_{K} ?

Motivation.

Motivation:

- In the genus three case there are two types of curves, hyperelliptic curves, and quartic plane curves.
- By the André-Oort conjecture the number of hyperelliptic curves with CM over \mathbb{C} might be finite.
- Is there any sextic CM field K in the LMFDB with $\mathbb{Q}(i) \notin K$, for which there exists a hyperelliptic curve whose Jacobian has primitive CM by \mathbb{Z}_{K} ?
- Cryptographic relevance. Is there any sextic CM field K in the LMFDB for which there exists a hyperelliptic curve X and a quartic plane curve Y whose Jacobian has primitive CM by \mathbb{Z}_{K} ?

Motivation.

Motivation:

- In the genus three case there are two types of curves, hyperelliptic curves, and quartic plane curves.
- By the André-Oort conjecture the number of hyperelliptic curves with CM over \mathbb{C} might be finite.
- Is there any sextic CM field K in the LMFDB with $\mathbb{Q}(i) \notin K$, for which there exists a hyperelliptic curve whose Jacobian has primitive CM by \mathbb{Z}_{K} ?
- Cryptographic relevance. Is there any sextic CM field K in the LMFDB for which there exists a hyperelliptic curve X and a quartic plane curve Y whose Jacobian has primitive CM by \mathbb{Z}_{K} ?
- If yes, does there exist an isogeny of small degree between the Jacobian of X and Y, where both Jacobians have $C M$ by \mathbb{Z}_{K} ?

Motivation.

Motivation:

- In the genus three case there are two types of curves, hyperelliptic curves, and quartic plane curves.
- By the André-Oort conjecture the number of hyperelliptic curves with CM over \mathbb{C} might be finite.
- Is there any sextic CM field K in the LMFDB with $\mathbb{Q}(i) \notin K$, for which there exists a hyperelliptic curve whose Jacobian has primitive CM by \mathbb{Z}_{K} ?
- Cryptographic relevance. Is there any sextic CM field K in the LMFDB for which there exists a hyperelliptic curve X and a quartic plane curve Y whose Jacobian has primitive CM by \mathbb{Z}_{K} ?
- If yes, does there exist an isogeny of small degree between the Jacobian of X and Y, where both Jacobians have $C M$ by \mathbb{Z}_{K} ?

The goal.

A systematic search in the LMFDB with the aim to find:

- All sextic complex multiplication (CM) fields K for which (heuristically) there exist both hyperelliptic and non-hyperelliptic curves whose Jacobian has primitive $C M$ by \mathbb{Z}_{K}.
- All sextic CM fields K for which (heuristically) there exists a hyperelliptic curve whose Jacobian has primitive CM by \mathbb{Z}_{K} ?

Main Result 1

Main Result 1

Heuristically, there are 14 sextic CM fields K in the LMFDB for which there exist both a hyperelliptic and a non-hyperelliptic curve whose Jacobian has primitive $C M$ by \mathbb{Z}_{K}. For all of these fields K we have that $\operatorname{Gal}(K \mid \mathbb{Q}) \simeq C_{2}^{3} \rtimes S_{3}$.

Why are the fields from Main Result 1 interesting?

Cryptographic relevance:

- Solving the Discrete Logarithm Problem (DLP) in Jacobians of hyperelliptic curves of genus 3 in $\widetilde{O}\left(q^{4 / 3}\right)$ using [GTTD07].
- Solving the DLP in Jacobians of non-hyperelliptic curves of genus 3 $\widetilde{O}(q)$ using [Die06].

Main Result 2

Main Result 2

Heuristically, including the fields mentioned in Main Result 1, there are 3,422 CM fields K in the LMFDB for which there exists a hyperelliptic curve whose Jacobian has primitive $C M$ by \mathbb{Z}_{k}. Of these fields,

- 348 have Galois group isomorphic to C_{6}.
- 3,057 have Galois group isomorphic to D_{6}.
- 17 have Galois group isomorphic to $C_{2}^{3} \rtimes S_{3}$.
- We have $\mathbb{Q}(i) \subset K$ for all but 5 of these fields K, of which 2 (resp. 3) have Galois group isomorphic to C_{6} (resp. $C_{2}^{3} \rtimes S_{3}$).

Main Result 2

Why are the fields from Main Result 2 interesting?

- By the André-Oort conjecture the number of hyperelliptic curves with CM over \mathbb{C} might be finite.
- By [Wen01]: If $\operatorname{Jac}(X)$ is simple of dimension 3 and has CM by \mathbb{Z}_{K}, where $\mathbb{Q}(i) \subset K$, then X is hyperelliptic.
- [Kı16] classifies in her PhD thesis all $\mathbb{Q}(i) \subset K$ with $h_{K}=1$ where there exists a hyperelliptic curve whose Jacobian has primitive CM by \mathbb{Z}_{K}.

Main Result 2

The exceptional case where $\mathbb{Q}(i) \notin K$ is from interest.

- The two fields with Galois group isomorphic to C_{6} were already known by [BILV16].
- The three cases with Galois group isomorphic to $C_{2}^{3} \rtimes S_{3}$ are completely new.

Main Result 3

Main Result 3

Let K be the CM field defined by the polynomial $t^{6}+10 t^{4}+21 t^{2}+4$, $d_{K}=-1 \cdot 2^{8} \cdot 359^{2}$, and let r be a zero of the polynomial $t^{4}-5 t^{2}-2 t+1$.

- Consider the hyperelliptic curve

$$
\begin{aligned}
X: \quad y^{2}= & x^{8}+\left(-28 r^{3}-4 r^{2}+132 r+84\right) x^{7}+\left(-600 r^{3}-160 r^{2}+2920 r+2044\right) x^{6} \\
& +\left(-3532 r^{3}-940 r^{2}+17224 r+11944\right) x^{5}+\left(9040 r^{3}+2890 r^{2}-44860 r-31460\right) x^{4} \\
& +\left(167536 r^{3}+49480 r^{2}-824532 r-576212\right) x^{3} \\
& +\left(-226976 r^{3}-64932 r^{2}+1113648 r+776872\right) x^{2} \\
& +\left(-244204 r^{3}-69572 r^{2}+1197716 r+835300\right) x \\
& +\left(319956 r^{3}+94725 r^{2}-1575062 r-1100801\right),
\end{aligned}
$$

Main Result 3

- The smooth plane quartic curve

$$
\begin{aligned}
Y: & \left(14106 r^{3}-150652 r^{2}+185086 r+292255\right) x^{4} \\
& +\left(-171112 r^{3}+44200 r^{2}+916008 r+93360\right) x^{3} y \\
& +\left(-120788 r^{3}+49032 r^{2}+382244 r+300708\right) x^{3} z \\
& +\left(467744 r^{3}-209864 r^{2}-2160704 r+183416\right) x^{2} y^{2} \\
& +\left(-72248 r^{3}+64768 r^{2}+347488 r-362984\right) x^{2} y z \\
& +\left(5720 r^{3}-12378 r^{2}-15628 r+50692\right) x^{2} z^{2} \\
& +\left(-512608 r^{3}+349824 r^{2}+2423616 r-580448\right) x y^{3} \\
& +\left(202192 r^{3}-151024 r^{2}-1180320 r+403568\right) x y^{2} z \\
& +\left(6512 r^{3}-11272 r^{2}+178120 r-71336\right) x y z^{2}+\left(-11832 r^{3}+12268 r^{2}-844 r+1376\right) x z^{3} \\
& +\left(263424 r^{3}-176880 r^{2}-1159232 r+335040\right) y^{4} \\
& +\left(-201216 r^{3}+100448 r^{2}+856096 r-249632\right) y^{3} z \\
& +\left(62112 r^{3}+1984 r^{2}-226512 r+71624\right) y^{2} z^{2} \ldots
\end{aligned}
$$

Main Result 3

$\cdots+\left(-12520 r^{3}-13112 r^{2}+27736 r-5360\right) y z^{3}+\left(1526 r^{3}+2411 r^{2}-658 r+197\right) z^{4}=0$.
Then heuristically there exists an isogeny of degree 2 between the Jacobians of X and Y, and both have $C M$ by the maximal order \mathbb{Z}_{K}.

The sets $\mathcal{M}_{\mathbb{Z}_{k}}$ and $\mathcal{M}_{\mathbb{Z}_{k}}(\Phi)$.

We define by $\mathcal{M}_{\mathbb{Z}_{K}}=$ set of isomorphism classes of p.p.a. threefolds with primitive CM by \mathbb{Z}_{k} modulo equivalence. How do we efficiently compute representatives in $\mathcal{M}_{\mathbb{Z}_{k}}$?

Restrict to:

$$
\mathcal{M}_{\mathbb{Z}_{k}}(\Phi)=\{(A, \Phi): A \text { is p.p.a. threefold, } A=A(\Phi, \mathfrak{a}, \xi)\} .
$$

$\leadsto \mathcal{M}_{\mathbb{Z}_{K}}$ is disjoint union of $\mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$ for all primitive CM type Φ modulo equivalence.

1. The Shimura class group \mathcal{C}_{K} and its type norm subgroup.

Assume we have determined a triple $(\Phi, \mathfrak{a}, \xi) \in \mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$.
The Shimura class group \mathcal{C}_{K}

$$
\left\{(\mathfrak{b}, \beta): \mathfrak{b} \text { is fractional } \mathbb{Z}_{K} \text {-ideal, } \overline{\mathfrak{b}} \mathfrak{b}=\beta \mathbb{Z}_{K}, \beta \in K_{0}^{*} \text { tot. pos. }\right\}
$$ modulo equivalence.

Theorem
The action of the Shimura class group on the set $\mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$ given by

$$
\mathcal{C}_{K} \times \mathcal{M}_{\mathbb{Z}_{K}}(\Phi) \rightarrow \mathcal{M}_{\mathbb{Z}_{K}}(\Phi),((\mathfrak{b}, \beta),(\Phi, \mathfrak{a}, \xi)) \mapsto\left(\Phi, \mathfrak{b a}, \beta^{-1} \xi\right)
$$

is free and transitive.

2. The Shimura class group \mathcal{C}_{K} and its type norm subgroup.

Using the fact that $\mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$ is a \mathcal{C}_{K}-torsor we get:
Corollary
Any isogeny between p.p.a. threefolds with primitive $C M$ by \mathbb{Z}_{K} in $\mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$ for a fixed Φ is induced by some $(\mathfrak{b}, \beta) \in \mathcal{C}_{K}$. \square

3. The Shimura class group \mathcal{C}_{K} and its type norm subgroup.

To compute \mathcal{C}_{K} (isogenies in $\mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$) requires an efficient computation of the group homomorphisms involved in the exact sequence

$$
1 \rightarrow \frac{\left(\mathbb{Z}_{K_{0}}^{*}\right)^{+}}{N_{K / K_{0}}\left(\mathbb{Z}_{K}^{*}\right)} \xrightarrow{u \mapsto\left(\mathbb{Z}_{K}, u\right)} \mathcal{C}_{K} \xrightarrow{(\mathfrak{b}, \beta) \mapsto \mathfrak{b}} C l(K) \xrightarrow{N_{K / K_{0}}} C l\left(K_{0}^{+}\right) \rightarrow 1
$$

4. The Shimura class group \mathcal{C}_{K} and its type norm subgroup.

Is there a way to avoid an explicit computation of the Shimura group \mathcal{C}_{K} ?

Theorem

Let K be a sextic CM field with Galois group isomorphic to C_{6} or D_{6}. For any equivalence class $(\mathfrak{b}, \beta) \in \mathcal{C}_{K}$ the equivalence class of $\left(\mathfrak{b}^{2}, \beta^{\prime}\right)$ is in the image of the map

$$
\mathcal{N}: C l\left(K^{r}\right) \rightarrow \mathcal{C}_{K},[\mathfrak{a}] \mapsto\left(N_{\Phi^{r}}(\mathfrak{a}), N(\mathfrak{a})\right),
$$

where $\beta^{\prime}=N(\mathfrak{b})^{3}$.

The theorem above allow us to proceed without any explicit computation of the reflex type norm $N_{\phi^{r}}$.

5. The Shimura class group \mathcal{C}_{K} and its type norm subgroup.

Can we further restrict to hyperelliptic (non-hyperelliptic) CM points in $\mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$?

Theorem
The set $\mathcal{M}_{K}(\Phi)$ is finite and stable under $G=\operatorname{Gal}\left(\overline{\mathbb{Q}} \mid K_{0}^{r}\right)$.

Corollary
There is a partition of $\mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$ into G-orbits, where any G-orbit is induced by $\left(\mathcal{C}_{K} / \operatorname{im} \mathcal{N}\right) \times \mathcal{M}_{K}(\Phi) \rightarrow \mathcal{M}_{K}(\Phi)$.

- In the Corollary above we use the explicit Galois action in the First Main Theorem of CM.

5. The Shimura class group \mathcal{C}_{K} and its type norm subgroup.

Can we further restrict to hyperelliptic (non-hyperelliptic) CM points in $\mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$?

Theorem
The set $\mathcal{M}_{K}(\Phi)$ is finite and stable under $G=\operatorname{Gal}\left(\overline{\mathbb{Q}} \mid K_{0}^{r}\right)$.

Corollary
There is a partition of $\mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$ into G-orbits, where any G-orbit is induced by $\left(\mathcal{C}_{K} / \operatorname{im} \mathcal{N}\right) \times \mathcal{M}_{K}(\Phi) \rightarrow \mathcal{M}_{K}(\Phi)$.

- In the Corollary above we use the explicit Galois action in the First Main Theorem of CM.
- Any G-orbit corresponds to Galois conjugate hyperelliptic, or non-hyperelliptic CM points in $\mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$.

5. The Shimura class group \mathcal{C}_{K} and its type norm subgroup.

Can we further restrict to hyperelliptic (non-hyperelliptic) CM points in $\mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$?

Theorem
The set $\mathcal{M}_{K}(\Phi)$ is finite and stable under $G=\operatorname{Gal}\left(\overline{\mathbb{Q}} \mid K_{0}^{r}\right)$.

Corollary

There is a partition of $\mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$ into G-orbits, where any G-orbit is induced by $\left(\mathcal{C}_{K} / \operatorname{im} \mathcal{N}\right) \times \mathcal{M}_{K}(\Phi) \rightarrow \mathcal{M}_{K}(\Phi)$.

- In the Corollary above we use the explicit Galois action in the First Main Theorem of CM.
- Any G-orbit corresponds to Galois conjugate hyperelliptic, or non-hyperelliptic CM points in $\mathcal{M}_{\mathbb{Z}_{k}}(\Phi)$.

The precomputation step.

Let K be a sextic CM field, and let K_{0} be its totally real subfield. Determine:
(1) $\mathrm{Cl}(K), \mathbb{Z}_{K}^{*}, \mathrm{Cl}\left(K_{0}\right), \mathrm{Cl}^{+}\left(K_{0}\right)$, and $\mathbb{Z}_{K_{0}}^{*}$.
(2) $G_{1}=\left\{[\mathfrak{a}] \in \mathrm{Cl}(K): \mathfrak{a} \overline{\mathfrak{a}}=\mu \mathbb{Z}_{K}\right.$ for $\left.\mu \in K_{0}\right\}$.
(3) $G_{2}=\left\{[\mathfrak{a}] \in G_{1}: \mathfrak{a} \overline{\mathfrak{a}}=\mu \mathbb{Z}_{K}\right.$ for $\mu \in K_{0}$ totally positive $\}$.
(9) Let $Q=G_{2} / e G_{2}$, where $e=2$ if $\operatorname{Gal}(K) \in\left\{C_{6}, D_{6}\right\}$.
(5) Set of ideals

- $C=\left\{\mathfrak{c} \subset \mathbb{Z}_{K}: \mathfrak{c}\right.$ is representative of $[\mathfrak{c}]$ in $\left.G_{1} / G_{2}\right\}$, and
- $B=\left\{\mathfrak{b} \subset \mathbb{Z}_{K}: \mathfrak{b}\right.$ is representative of $[\mathfrak{b}]$ in $\left.Q\right\}$.
(6) $U_{1}=\left\{u \in \mathbb{Z}_{K_{0}}^{*}: u\right.$ is totally positive $\}$.
(1) $U_{2}=\left\{u \in U_{1}: u \in \operatorname{im} N_{K / K_{0}}\right\}$.
(8) Set of units
- $W=\left\{w \in \mathbb{Z}_{K_{0}}^{*}: w\right.$ is representative of $[w]$ in $\left.\mathbb{Z}_{K_{0}}^{*} / U_{1}\right\}$, and
- $V=\left\{v \in \mathbb{Z}_{K_{0}}^{*}: v\right.$ is representative of $[v]$ in $\left.U_{1} / U_{2}\right\}$.

The precomputation step.

Some explanations:

- We can compute the groups in step (1) by using class field methods in Magma.
- We can determine the subgroup
- G_{1} in Step (2) as the kernel of the homomorphism $\mathrm{Cl}(K) \rightarrow \mathrm{Cl}\left(K_{0}\right)$ given by $[\mathfrak{a}] \mapsto[\mathfrak{a} \overline{\mathfrak{a}}]$, and
- G_{2} as the kernel of a similar homomorphism to $\mathrm{Cl}^{+}\left(K_{0}\right)$.

The precomputation step.

Some explanations:

- We can compute the groups in step (1) by using class field methods in Magma.
- We can determine the subgroup
- G_{1} in Step (2) as the kernel of the homomorphism $\mathrm{Cl}(K) \rightarrow \mathrm{Cl}\left(K_{0}\right)$ given by $[\mathfrak{a}] \mapsto[\mathfrak{a} \overline{\mathfrak{a}}]$, and
- G_{2} as the kernel of a similar homomorphism to $\mathrm{Cl}^{+}\left(K_{0}\right)$.
- Similar considerations apply to the determination of U_{1} and U_{2} in Steps (6) and (7).

The precomputation step.

Some explanations:

- We can compute the groups in step (1) by using class field methods in Magma.
- We can determine the subgroup
- G_{1} in Step (2) as the kernel of the homomorphism $\mathrm{Cl}(K) \rightarrow \mathrm{Cl}\left(K_{0}\right)$ given by $[\mathfrak{a}] \mapsto[\mathfrak{a} \overline{\mathfrak{a}}]$, and
- G_{2} as the kernel of a similar homomorphism to $\mathrm{Cl}^{+}\left(K_{0}\right)$.
- Similar considerations apply to the determination of U_{1} and U_{2} in Steps (6) and (7).
- The remaining points imply more technical details which we explain in our paper.

The precomputation step.

Some explanations:

- We can compute the groups in step (1) by using class field methods in Magma.
- We can determine the subgroup
- G_{1} in Step (2) as the kernel of the homomorphism $\mathrm{Cl}(K) \rightarrow \mathrm{Cl}\left(K_{0}\right)$ given by $[\mathfrak{a}] \mapsto[\mathfrak{a} \overline{\mathfrak{a}}]$, and
- G_{2} as the kernel of a similar homomorphism to $\mathrm{Cl}^{+}\left(K_{0}\right)$.
- Similar considerations apply to the determination of U_{1} and U_{2} in Steps (6) and (7).
- The remaining points imply more technical details which we explain in our paper.

Algorithms.

We use the objects computed in the precomputation step in the following algorithms:
(1) Algorithm that determines an initial triple $(\Phi, \mathfrak{a}, \xi)$.
(2) Algorithm that uses (1) to determine all triples $(\Phi, \mathfrak{a}, \xi)$.
(3) Algorithm that calculates period matrices of all p.p.a.v. found using (2) and automatically sorts them into sets of hyperelliptic and non-hyperelliptic Jacobains.
We used these algorithms to find our main results.

Our code is implemented in Magma [BCP97] and available at [DIS21].

Thank you for listening!

图 Wieb Bosma, John Cannon, and Catherine Playoust.
The Magma algebra system. I. The user language.
J. Symbolic Comput., 24(3-4):235-265, 1997.

Computational algebra and number theory (London, 1993).
Rennifer S. Balakrishnan, Sorina Ionica, Kristin Lauter, and Christelle Vincent.
Constructing genus-3 hyperelliptic Jacobians with CM.
LMS J. Comput. Math., 19(suppl. A):283-300, 2016.
固 Claus Diem.
An index calculus algorithm for plane curves of small degree. In Florian Hess, Sebastian Pauli, and Michael E. Pohst, editors, Algorithmic Number Theory, 7th International Symposium, ANTS-VII, Berlin, Germany, July 23-28, 2006, Proceedings, volume 4076 of Lecture Notes in Computer Science, pages 543-557. Springer, 2006.
Bogdan Dina, Sorina Ionica, and Jeroen Sijsling.
cm－calculations，a Magma package for calculating with CM curves．
https：／／github．com／JRSijsling／cm－calculations， 2021.
目 Pierrick Gaudry，Emmanuel Thomé，Nicolas Thériault，and Claus Diem．
A double large prime variation for small genus hyperelliptic index calculus．
Math．Comput．，76（257）：475－492， 2007.
（ Bruno Klingler and Andrei Yafaev．
The André－Oort conjecture．
Annals of Mathematics，180：867－925， 2014.
圊 Pınar Kılıçer．
The CM class number one problem for curves．
PhD thesis，Universiteit Leiden， 2016.
國 MarcoMarco Streng．
Complex multiplication of abelian surfaces．

PhD thesis, Universiteit Leiden, 2010.
E Annegret Weng.
A class of hyperelliptic CM-curves of genus three. J. Ramanujan Math. Soc., 16(4):339-372, 2001.

