Isogenous hyperelliptic and non-hyperelliptic Jacobians with maximal Complex Multiplication

Joint work with S. Ionica (UPJV), and J. Sijsling (Ulm University).

Outline I

The main objects.

- CM fields and their CM types.
- The Galois group of a CM field.
- Abelian varieties, and algebraic curves.
- The Jacobian of an algebraic curve.

A brief introduction in Complex Multiplication (CM) Theory.

- The main idea of CM Theory.
- Principally polarized abelian varieties with CM by \mathbb{Z}_{K} .
 - \bullet The construction of p.p.a.v. with CM by $\mathbb{Z}_{\mathcal{K}}.$

Bogdan Dina

Outline II

3

The project.

- Motivation
- The goal.
- Main Result 1.
- Main Result 2.
- Main Result 3.

4 The computation of the sets $\mathcal{M}_{\mathbb{Z}_K}$ and $\mathcal{M}_{\mathbb{Z}_K}(\Phi)$.

- The sets $\mathcal{M}_{\mathbb{Z}_{K}}$ and $\mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$.
- \bullet The Shimura class group $\mathcal{C}_{\mathcal{K}}$ and its reflex type norm subgroup.
- The precomputation step.
- The algorithms.

The L-functions and Modular Forms Database.

The L-functions and Modular Forms Database (LMFDB).

- What is the LMFDB?
- The importance of the LMFDB in Mathematics?
- The objects in today's discussion:
 - Complex Multiplication (CM) fields and their
 - Galois groups.
 - Algebraic curves and their
 - Jacobians.

Complex Multiplication (CM) fields, and their CM types.

- A CM field K is a totally imaginary quadratic extension of a totally real number field K_0 .
- Let L be the Galois closure of K. A CM type Φ on K (with values in L) is a subset Φ ⊂ Hom(K, L) such that

 $Hom(K,L) = \Phi \amalg \overline{\Phi}.$

- The reflex field $K^r \subset L$ of (K, Φ) is the fixed field of the group $H = \{\sigma \in Gal(L|\mathbb{Q}) : \sigma \Phi_L = \Phi_L\}.$
- The reflex CM type Φ^r of K^r is induced by the CM type Φ_L^{-1} on L.

The Galois group of a sextic CM field.

Theorem

Let K be sextic CM field, with Galois closure L. Then G = Gal($L|\mathbb{Q}$) is isomorphic to one of the following groups:

- **2** D_{6} .
- $\begin{array}{l} \textcircled{3} \quad C_2^3 \rtimes C_3. \\ \textcircled{4} \quad C_2^3 \rtimes S_3. \end{array}$

- Our fields K are all algebraically closed and of characteristic zero.
- All our curves over a field *K* are separated and geometrically integral schemes of dimension 1 over *K*.
- The genus:
 - g = 1 : Elliptic curves.
 - g = 2: Hyperelliptic curves.
 - g = 3: Hyperelliptic curves, and quartic plane curves.
- An abelian variety over K is an algebraic group that is geometrically integral and proper over K.

The Jacobian Jac(X) of a curve X over \mathbb{C} .

- We can compute the Jacobian of X in the following way:
 - Let γ_i be a basis for the homology group $H_1(X,\mathbb{Z}) \cong \mathbb{Z}^{2g}$.
 - Let $\omega_1, \ldots, \omega_g$ be a basis of differential forms on X.
 - Compute the vectors $\lambda_i \in \mathbb{C}^g$ for all i = 1, ..., 2g by

$$(\lambda_i)_j = \int_{\gamma_j} \omega_i$$

Then Λ = (λ₁,..., λ_{2g}) is a lattice in C^g called the period lattice of X.
Define

$$\operatorname{Jac}(X) = \mathbb{C}^g / \Lambda.$$

1. The main idea of CM Theory.

Motivation: Is there a way to describe a general method for describing all Abelian extensions of a number field?

- The Kronecker-Weber Theorem: Any abelian extension Q ⊂ L is contained in some cyclotomic fields Q(ζ_n) for some n, ζ_n = exp(2πi/n).
- Kronecker's Jugendtraum (Hilbert 12): Replacing \mathbb{Q} by a different base field K, and ζ_n by some "complex numbers", is there a statement that is analogous to the Kronecker-Weber Theorem?

2. The main idea of CM Theory.

The answer to Kronecker's Jugendtraum is given by:

- The theory of Complex Multiplication (CM) introduced by Shimura and *Taniyama* in the 1950's.
- Complete answer to Kronecker's Jugendtraum in the case of CM fields.

3. The main idea of CM Theory.

The genus one case.

Theorem (Main Theorem 1)

Let K be an imaginary quadratic field with ring of integers \mathbb{Z}_{K} , and let E be an elliptic curve over \mathbb{C} with $\text{End}(E) \cong \mathbb{Z}_{K}$. Then j(E) is an algebraic integer, and

K(j(E))

is the Hilbert class field H of K.

Theorem

If H is the Hilbert class field of K, then the Artin map $I_K \rightarrow \text{Gal}(H|K)$ is surjective and induces an isomorphism

$$CI(K) \xrightarrow{\sim} Gal(H|K).$$

Principally polarized abelian abelian varieties (p.p.a.v) with CM by $\mathbb{Z}_{\mathcal{K}}$.

Theorem

Simple principally polarized abelian varieties of dimension three are Jacobian varieties.

Definition

Let K be a sextic CM field. A principally polarized abelian variety A of dimension three has CM by the maximal order \mathbb{Z}_K if $End(A) \cong \mathbb{Z}_K$.

The dimension one case:

- An imaginary quadratic field K with ring of integers Z_K.
- A fractional \mathbb{Z}_K -ideal \mathfrak{a} .

The dimension three case:

- An sextic CM field K with ring of integers ℤ_K.
- A fractional \mathbb{Z}_K -ideal \mathfrak{a} .

The dimension one case:

- An imaginary quadratic field K with ring of integers Z_K.
- A fractional \mathbb{Z}_{K} -ideal \mathfrak{a} .
- There exists a correspondence between [a] ∈ Cl(K) and lattice Λ ⊂ C modulo equivalence.

 $\rightsquigarrow E \cong \operatorname{Jac}(E).$

The dimension three case:

- An sextic CM field K with ring of integers ℤ_K.
- A fractional \mathbb{Z}_{K} -ideal \mathfrak{a} .
- Together with a primitive CM type Φ of K, there exists correspondence between [α] ∈ CI(K) and lattice Λ = Φ(α) ⊂ C³ modulo equivalence.

$$\rightsquigarrow A \cong \mathbb{C}^3 / \Lambda.$$

The dimension one case:

- An imaginary quadratic field K with ring of integers Z_K.
- A fractional \mathbb{Z}_{K} -ideal \mathfrak{a} .
- There exists a correspondence between [α] ∈ Cl(K) and lattice Λ ⊂ C modulo equivalence.

 $\rightsquigarrow E \cong \operatorname{Jac}(E).$

The dimension three case:

- An sextic CM field K with ring of integers ℤ_K.
- A fractional \mathbb{Z}_K -ideal \mathfrak{a} .
- Together with a primitive CM type Φ of K, there exists correspondence between [a] ∈ Cl(K) and lattice Λ = Φ(a) ⊂ C³ modulo equivalence.

$$\rightsquigarrow A \cong \mathbb{C}^3/\Lambda.$$

Principal polarization in the dimension three case.

- Ket ξ ∈ K, such that -ξ² is totally positive in K₀, and im(φ(ξ)) > 0 for all φ ∈ Φ, and such that (ξ) = (αā𝔅_{K|ℚ})⁻¹.
- Then $(\Phi, \mathfrak{a}, \xi)$ gives rise to a p.p.a.v

$$A(\mathfrak{a},\xi) \cong (\mathbb{C}^3/\Lambda, E)$$

of dimension three over $\mathbb{C},$ with

- Principal polarization $E(\Phi(\alpha), \Phi(\beta)) := \operatorname{Tr}_{K|\mathbb{Q}}(\xi \overline{\alpha} \beta)$ for $\alpha, \beta \in K$, and
- Where $A(\mathfrak{a},\xi)$ has CM by \mathbb{Z}_{K} .

- In the genus three case there are two types of curves, hyperelliptic curves, and quartic plane curves.
- By the André-Oort conjecture the number of hyperelliptic curves with CM over C might be finite.

- In the genus three case there are two types of curves, hyperelliptic curves, and quartic plane curves.
- By the André-Oort conjecture the number of hyperelliptic curves with CM over $\mathbb C$ might be finite.
- Is there any sextic CM field K in the LMFDB with Q(i) ∉ K, for which there exists a hyperelliptic curve whose Jacobian has primitive CM by Z_K?

- In the genus three case there are two types of curves, hyperelliptic curves, and quartic plane curves.
- By the André-Oort conjecture the number of hyperelliptic curves with CM over $\mathbb C$ might be finite.
- Is there any sextic CM field K in the LMFDB with Q(i) ∉ K, for which there exists a hyperelliptic curve whose Jacobian has primitive CM by Z_K?
- Cryptographic relevance. Is there any sextic CM field K in the LMFDB for which there exists a hyperelliptic curve X and a quartic plane curve Y whose Jacobian has primitive CM by \mathbb{Z}_{K} ?

- In the genus three case there are two types of curves, hyperelliptic curves, and quartic plane curves.
- By the André-Oort conjecture the number of hyperelliptic curves with CM over $\mathbb C$ might be finite.
- Is there any sextic CM field K in the LMFDB with Q(i) ∉ K, for which there exists a hyperelliptic curve whose Jacobian has primitive CM by Z_K?
- Cryptographic relevance. Is there any sextic CM field K in the LMFDB for which there exists a hyperelliptic curve X and a quartic plane curve Y whose Jacobian has primitive CM by \mathbb{Z}_K ?
- If yes, does there exist an isogeny of small degree between the Jacobian of X and Y, where both Jacobians have CM by Z_K?

- In the genus three case there are two types of curves, hyperelliptic curves, and quartic plane curves.
- By the André-Oort conjecture the number of hyperelliptic curves with CM over $\mathbb C$ might be finite.
- Is there any sextic CM field K in the LMFDB with Q(i) ∉ K, for which there exists a hyperelliptic curve whose Jacobian has primitive CM by Z_K?
- Cryptographic relevance. Is there any sextic CM field K in the LMFDB for which there exists a hyperelliptic curve X and a quartic plane curve Y whose Jacobian has primitive CM by \mathbb{Z}_K ?
- If yes, does there exist an isogeny of small degree between the Jacobian of X and Y, where both Jacobians have CM by Z_K?

The goal.

The goal.

A systematic search in the LMFDB with the aim to find:

- All sextic complex multiplication (CM) fields K for which (heuristically) there exist both hyperelliptic and non-hyperelliptic curves whose Jacobian has primitive CM by Z_K.
- All sextic CM fields K for which (heuristically) there exists a hyperelliptic curve whose Jacobian has primitive CM by Z_K?

Main Result 1

Heuristically, there are 14 sextic CM fields K in the LMFDB for which there exist both a hyperelliptic and a non-hyperelliptic curve whose Jacobian has primitive CM by \mathbb{Z}_K . For all of these fields K we have that $Gal(K|\mathbb{Q}) \simeq C_2^3 \rtimes S_3$.

Why are the fields from Main Result 1 interesting?

Cryptographic relevance:

- Solving the Discrete Logarithm Problem (DLP) in Jacobians of hyperelliptic curves of genus 3 in *O*(q^{4/3}) using [GTTD07].
- Solving the DLP in Jacobians of non-hyperelliptic curves of genus 3 $\widetilde{O}(q)$ using [Die06].

Main Result 2.

Main Result 2

Main Result 2

Heuristically, including the fields mentioned in Main Result 1, there are 3,422 CM fields K in the LMFDB for which there exists a hyperelliptic curve whose Jacobian has primitive CM by \mathbb{Z}_{K} . Of these fields,

- 348 have Galois group isomorphic to C_6 .
- 3,057 have Galois group isomorphic to D₆.
- 17 have Galois group isomorphic to $C_2^3 \rtimes S_3$.
- We have Q(i) ⊂ K for all but 5 of these fields K, of which 2 (resp. 3) have Galois group isomorphic to C₆ (resp. C₂³ × S₃).

Why are the fields from Main Result 2 interesting?

- By the André-Oort conjecture the number of hyperelliptic curves with CM over $\mathbb C$ might be finite.
- By [Wen01]: If Jac(X) is simple of dimension 3 and has CM by Z_K, where Q(i) ⊂ K, then X is hyperelliptic.
- [Kı16] classifies in her PhD thesis all Q(i) ⊂ K with h_K = 1 where there exists a hyperelliptic curve whose Jacobian has primitive CM by Z_K.

The exceptional case where $\mathbb{Q}(i) \notin K$ is from interest.

- The two fields with Galois group isomorphic to C₆ were already known by [BILV16].
- The three cases with Galois group isomorphic to $C_2^3 \rtimes S_3$ are completely new.

Main Result 3

Let K be the CM field defined by the polynomial $t^6 + 10t^4 + 21t^2 + 4$, $d_K = -1 \cdot 2^8 \cdot 359^2$, and let r be a zero of the polynomial $t^4 - 5t^2 - 2t + 1$.

• Consider the hyperelliptic curve

$$\begin{split} X: \quad y^2 &= x^8 + (-28r^3 - 4r^2 + 132r + 84)x^7 + (-600r^3 - 160r^2 + 2920r + 2044)x^6 \\ &\quad + (-3532r^3 - 940r^2 + 17224r + 11944)x^5 + (9040r^3 + 2890r^2 - 44860r - 31460)x^4 \\ &\quad + (167536r^3 + 49480r^2 - 824532r - 576212)x^3 \\ &\quad + (-226976r^3 - 64932r^2 + 1113648r + 776872)x^2 \\ &\quad + (-244204r^3 - 69572r^2 + 1197716r + 835300)x \\ &\quad + (319956r^3 + 94725r^2 - 1575062r - 1100801), \end{split}$$

and

Y

• The smooth plane quartic curve

:
$$(14106r^3 - 150652r^2 + 185086r + 292255)x^4$$

+ $(-171112r^3 + 44200r^2 + 916008r + 93360)x^3y$
+ $(-120788r^3 + 49032r^2 + 382244r + 300708)x^3z$
+ $(467744r^3 - 209864r^2 - 2160704r + 183416)x^2y^2$
+ $(-72248r^3 + 64768r^2 + 347488r - 362984)x^2yz$
+ $(5720r^3 - 12378r^2 - 15628r + 50692)x^2z^2$
+ $(-512608r^3 + 349824r^2 + 2423616r - 580448)xy^3$
+ $(202192r^3 - 151024r^2 - 1180320r + 403568)xy^2z$
+ $(6512r^3 - 11272r^2 + 178120r - 71136)xyz^2 + (-11832r^3 + 12268r^2 - 844r + 1376)xz^3$
+ $(263424r^3 - 176880r^2 - 1159232r + 335040)y^4$
+ $(-201216r^3 + 100448r^2 + 856096r - 249632)y^3z$
+ $(62112r^3 + 1984r^2 - 226512r + 71624)y^2z^2 \dots$

 $\cdots + (-12520r^3 - 13112r^2 + 27736r - 5360)yz^3 + (1526r^3 + 2411r^2 - 658r + 197)z^4 = 0.$

Then heuristically there exists an isogeny of degree 2 between the Jacobians of X and Y, and both have CM by the maximal order \mathbb{Z}_{K} .

The sets $\mathcal{M}_{\mathbb{Z}_{\mathcal{K}}}$ and $\mathcal{M}_{\mathbb{Z}_{\mathcal{K}}}(\Phi)$.

We define by $\mathcal{M}_{\mathbb{Z}_K}$ = set of isomorphism classes of p.p.a. threefolds with primitive CM by \mathbb{Z}_K modulo equivalence.

How do we efficiently compute representatives in $\mathcal{M}_{\mathbb{Z}_{K}}$?

Restrict to:

$$\mathcal{M}_{\mathbb{Z}_{K}}(\Phi) = \{(A, \Phi) : A \text{ is } p.p.a. \text{ threefold}, A = A(\Phi, \mathfrak{a}, \xi)\}.$$

 $\sim \mathcal{M}_{\mathbb{Z}_{\mathcal{K}}}$ is disjoint union of $\mathcal{M}_{\mathbb{Z}_{\mathcal{K}}}(\Phi)$ for all primitive CM type Φ modulo equivalence.

1. The Shimura class group $\mathcal{C}_{\mathcal{K}}$ and its type norm subgroup.

Assume we have determined a triple $(\Phi, \mathfrak{a}, \xi) \in \mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$.

The Shimura class group $\mathcal{C}_{\mathcal{K}}$

 $\{(\mathfrak{b},\beta):\mathfrak{b} \text{ is fractional } \mathbb{Z}_{K}\text{-ideal}, \ \overline{\mathfrak{b}}\mathfrak{b}=\beta\mathbb{Z}_{K}, \ \beta\in K_{0}^{*} \text{ tot. pos.}\}$

modulo equivalence.

Theorem

The action of the Shimura class group on the set $\mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$ given by

$$\mathcal{C}_{\mathcal{K}} imes \mathcal{M}_{\mathbb{Z}_{\mathcal{K}}}(\Phi) o \mathcal{M}_{\mathbb{Z}_{\mathcal{K}}}(\Phi), \ ((\mathfrak{b}, \beta), (\Phi, \mathfrak{a}, \xi)) \mapsto (\Phi, \mathfrak{ba}, \beta^{-1}\xi)$$

is free and transitive.

The computation of the sets $\mathcal{M}_{\mathbb{Z}_{K}}$ and $\mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$.

2. The Shimura class group $\mathcal{C}_{\mathcal{K}}$ and its type norm subgroup.

Using the fact that $\mathcal{M}_{\mathbb{Z}_{\mathcal{K}}}(\Phi)$ is a $\mathcal{C}_{\mathcal{K}}\text{-torsor}$ we get:

Corollary

Any isogeny between p.p.a. threefolds with primitive CM by \mathbb{Z}_{K} in $\mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$ for a fixed Φ is induced by some $(\mathfrak{b},\beta) \in \mathcal{C}_{K}$.

3. The Shimura class group $\mathcal{C}_{\mathcal{K}}$ and its type norm subgroup.

To compute $C_{\mathcal{K}}$ (isogenies in $\mathcal{M}_{\mathbb{Z}_{\mathcal{K}}}(\Phi)$) requires an efficient computation of the group homomorphisms involved in the exact sequence

$$1 \to \frac{\left(\mathbb{Z}_{K_{0}}^{*}\right)^{+}}{N_{K/K_{0}}(\mathbb{Z}_{K}^{*})} \xrightarrow{u \mapsto (\mathbb{Z}_{K}, u)} \mathcal{C}_{K} \xrightarrow{(\mathfrak{b}, \beta) \mapsto \mathfrak{b}} \mathcal{C}I(K) \xrightarrow{N_{K/K_{0}}} \mathcal{C}I(K_{0}^{+}) \to 1$$

4. The Shimura class group $C_{\mathcal{K}}$ and its type norm subgroup.

Is there a way to avoid an explicit computation of the Shimura group C_K ?

Theorem

Let K be a sextic CM field with Galois group isomorphic to C_6 or D_6 . For any equivalence class $(\mathfrak{b},\beta) \in \mathcal{C}_K$ the equivalence class of (\mathfrak{b}^2,β') is in the image of the map

$$\mathcal{N}: Cl(K^r) \to \mathcal{C}_K, [\mathfrak{a}] \mapsto (N_{\Phi^r}(\mathfrak{a}), N(\mathfrak{a})),$$

where $\beta' = N(\mathfrak{b})^3$.

The theorem above allow us to proceed without any explicit computation of the reflex type norm N_{Φ^r} .

Bogdan Dina

5. The Shimura class group $\mathcal{C}_{\mathcal{K}}$ and its type norm subgroup.

Can we further restrict to hyperelliptic (non-hyperelliptic) CM points in $\mathcal{M}_{\mathbb{Z}_K}(\Phi)?$

Theorem

The set $\mathcal{M}_{\mathcal{K}}(\Phi)$ is finite and stable under $G = \operatorname{Gal}(\overline{\mathbb{Q}}|\mathcal{K}_0^r)$.

Corollary

There is a partition of $\mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$ into G-orbits, where any G-orbit is induced by $(\mathcal{C}_{K}/\operatorname{im} \mathcal{N}) \times \mathcal{M}_{K}(\Phi) \to \mathcal{M}_{K}(\Phi)$.

• In the Corollary above we use the explicit Galois action in the First Main Theorem of CM.

5. The Shimura class group $\mathcal{C}_{\mathcal{K}}$ and its type norm subgroup.

Can we further restrict to hyperelliptic (non-hyperelliptic) CM points in $\mathcal{M}_{\mathbb{Z}_K}(\Phi)?$

Theorem

The set $\mathcal{M}_{\mathcal{K}}(\Phi)$ is finite and stable under $G = \operatorname{Gal}(\overline{\mathbb{Q}}|\mathcal{K}_0^r)$.

Corollary

There is a partition of $\mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$ into *G*-orbits, where any *G*-orbit is induced by $(\mathcal{C}_{K}/\operatorname{im} \mathcal{N}) \times \mathcal{M}_{K}(\Phi) \to \mathcal{M}_{K}(\Phi)$.

- In the Corollary above we use the explicit Galois action in the First Main Theorem of CM.
- Any G-orbit corresponds to Galois conjugate hyperelliptic, or non-hyperelliptic CM points in M_{Z_K}(Φ).

5. The Shimura class group $\mathcal{C}_{\mathcal{K}}$ and its type norm subgroup.

Can we further restrict to hyperelliptic (non-hyperelliptic) CM points in $\mathcal{M}_{\mathbb{Z}_K}(\Phi)?$

Theorem

The set $\mathcal{M}_{\mathcal{K}}(\Phi)$ is finite and stable under $G = \operatorname{Gal}(\overline{\mathbb{Q}}|\mathcal{K}_0^r)$.

Corollary

There is a partition of $\mathcal{M}_{\mathbb{Z}_{K}}(\Phi)$ into *G*-orbits, where any *G*-orbit is induced by $(\mathcal{C}_{K}/\operatorname{im} \mathcal{N}) \times \mathcal{M}_{K}(\Phi) \to \mathcal{M}_{K}(\Phi)$.

- In the Corollary above we use the explicit Galois action in the First Main Theorem of CM.
- Any G-orbit corresponds to Galois conjugate hyperelliptic, or non-hyperelliptic CM points in M_{Z_K}(Φ).

Let K be a sextic CM field, and let K_0 be its totally real subfield. Determine:

- We can compute the groups in step (1) by using class field methods in MAGMA.
- We can determine the subgroup
 - G_1 in Step (2) as the kernel of the homomorphism $Cl(K) \rightarrow Cl(K_0)$ given by $[\mathfrak{a}] \mapsto [\mathfrak{a}\overline{\mathfrak{a}}]$, and
 - G_2 as the kernel of a similar homomorphism to $Cl^+(K_0)$.

- We can compute the groups in step (1) by using class field methods in MAGMA.
- We can determine the subgroup
 - G_1 in Step (2) as the kernel of the homomorphism $Cl(K) \rightarrow Cl(K_0)$ given by $[\mathfrak{a}] \mapsto [\mathfrak{a}\overline{\mathfrak{a}}]$, and
 - G_2 as the kernel of a similar homomorphism to $Cl^+(K_0)$.
 - Similar considerations apply to the determination of U_1 and U_2 in Steps (6) and (7).

- We can compute the groups in step (1) by using class field methods in MAGMA.
- We can determine the subgroup
 - G_1 in Step (2) as the kernel of the homomorphism $Cl(K) \rightarrow Cl(K_0)$ given by $[\mathfrak{a}] \mapsto [\mathfrak{a}\overline{\mathfrak{a}}]$, and
 - G_2 as the kernel of a similar homomorphism to $Cl^+(K_0)$.
 - Similar considerations apply to the determination of U_1 and U_2 in Steps (6) and (7).
 - The remaining points imply more technical details which we explain in our paper.

- We can compute the groups in step (1) by using class field methods in MAGMA.
- We can determine the subgroup
 - G_1 in Step (2) as the kernel of the homomorphism $Cl(K) \rightarrow Cl(K_0)$ given by $[\mathfrak{a}] \mapsto [\mathfrak{a}\overline{\mathfrak{a}}]$, and
 - G_2 as the kernel of a similar homomorphism to $Cl^+(K_0)$.
 - Similar considerations apply to the determination of U_1 and U_2 in Steps (6) and (7).
 - The remaining points imply more technical details which we explain in our paper.

Algorithms.

We use the objects computed in the precomputation step in the following algorithms:

- **1** Algorithm that determines an initial triple $(\Phi, \mathfrak{a}, \xi)$.
- **2** Algorithm that uses (1) to determine all triples $(\Phi, \mathfrak{a}, \xi)$.
- Algorithm that calculates period matrices of all p.p.a.v. found using (2) and automatically sorts them into sets of hyperelliptic and non-hyperelliptic Jacobains.

We used these algorithms to find our main results.

Our code is implemented in ${\rm MAGMA}$ [BCP97] and available at [DIS21].

Thank you for listening!

Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. *J. Symbolic Comput.*, 24(3-4):235–265, 1997.

Computational algebra and number theory (London, 1993).

Jennifer S. Balakrishnan, Sorina Ionica, Kristin Lauter, and Christelle Vincent.

Constructing genus-3 hyperelliptic Jacobians with CM. *LMS J. Comput. Math.*, 19(suppl. A):283–300, 2016.

Claus Diem.

An index calculus algorithm for plane curves of small degree. In Florian Hess, Sebastian Pauli, and Michael E. Pohst, editors, *Algorithmic Number Theory, 7th International Symposium, ANTS-VII, Berlin, Germany, July 23-28, 2006, Proceedings*, volume 4076 of *Lecture Notes in Computer Science*, pages 543–557. Springer, 2006.

Bogdan Dina, Sorina Ionica, and Jeroen Sijsling.

cm-calculations, a Magma package for calculating with CM curves.

https://github.com/JRSijsling/cm-calculations, 2021.

Pierrick Gaudry, Emmanuel Thomé, Nicolas Thériault, and Claus Diem.

A double large prime variation for small genus hyperelliptic index calculus.

Math. Comput., 76(257):475-492, 2007.

Bruno Klingler and Andrei Yafaev. The André-Oort conjecture. Annals of Mathematics, 180:867–925, 2014.

Pınar Kılıçer.

The CM class number one problem for curves. PhD thesis, Universiteit Leiden, 2016.

MarcoMarco Streng.

Complex multiplication of abelian surfaces.

PhD thesis, Universiteit Leiden, 2010.

Annegret Weng.

A class of hyperelliptic CM-curves of genus three.

J. Ramanujan Math. Soc., 16(4):339–372, 2001.