Explicit construction and parameters of projective toric codes

Jade Nardi

INRIA Saclay, LIX

March, 2021 Institut de Mathématiques de Bordeaux Séminaire de Théorie Algorithmique des Nombres

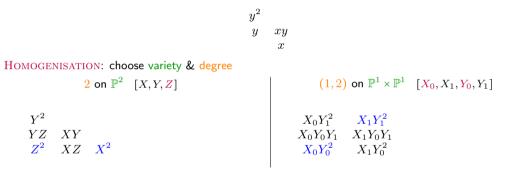
https://arxiv.org/abs/2003.10357

 Introduction
 Handling a toric variety
 Length
 Dimension
 Example
 Summary
 Towards new champion codes
 Bibliography

 ●○
 ○○
 ○○
 ○○
 ○
 ○○
 ○○
 ○

 Example of classical/Projective toric code

Classical toric code: Span of the evaluation on $(\mathbb{F}_q^*)^2$ of monomials

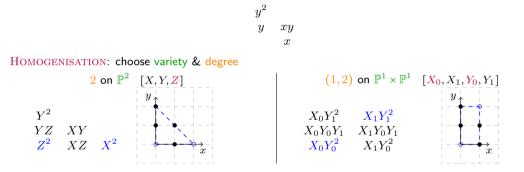


Projective toric code: Span of the evaluation of monomials on rational points of the whole variety

 $\begin{array}{c} (a,b,1) \ (a,1,0) \ (1,0,0) \\ (a,b) \in \mathbb{F}_q^2 \end{array} \begin{array}{c} (1,a,1,b) \ (0,1,1,b) \\ (1,a,0,1) \ (0,1,0,1) \end{array}$

< = > < = > < = > < = >

Classical toric code: Span of the evaluation on $(\mathbb{F}_q^*)^2$ of monomials



Projective toric code: Span of the evaluation of monomials on rational points of the *whole* variety (1, a, 1, b) (0, 1, 1, b)

(a, b, 1) (a, 1, 0) (1, 0, 0) $(a, b) \in \mathbb{F}_q^2$ Polygon \leftrightarrow variety & degree

Explicit construction and parameters of projective toric codes

Introduction 00 Classical/Projective toric codes An integral polytope $P \subset \mathbb{R}^N$ (vertices in \mathbb{Z}^N) defines an abstract toric variety \mathbf{X}_P with a divisor D and a monomial basis of L(D) (set of polynomials of a certain *degree*). Size of $P \leftrightarrow \text{Degree}$ in L(D) $\mathbb{D}^1 \setminus \mathbb{P}^1$ $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ Degree (1,2)Degree 2 Degree (4, 3, 3)Why toric? X_P contains a dense torus $\mathbb{T}_P \simeq \left(\overline{\mathbb{F}_q}^*\right)^N$ whose rational points are $(\mathbb{F}_q^*)^N$. Classical toric code: $C_P = \{(f(t))_{t \in \mathbb{T}_P}(\mathbb{F}_q) \mid f \in L(D)\}$ Hansen [Han02], Little-Schwarz [LS05], Ruano [Rua07], Soprunov-Soprunova [SS09] Aim : Constructing and studying the projective toric code

 $\mathsf{PC}_P = \left\{ (f(\mathbf{x}))_{\mathbf{x} \in \mathbf{X}_P(\mathbb{F}_q)} \mid f \in L(D) \right\}$

Advantages similar to $RM \rightarrow PRM$:

 \bullet length \nearrow , minimum distance \nearrow with roughly the same dimension.

Strenghten the geometric interpretation

< □ > < □ > < □ > < □ > < □ > < □ >

	Handling a toric variety					
00	0		000		0000	
Description o	f the toric variety ${f X}$	$_P$ associated	l to the polyt	cope P		

Several ways to describe \mathbf{X}_P thanks to the integral polytope P: (under some assumptions)

- \oplus geometric properties
- with *fans* as an abstract variety
- \ominus implementation

Several ways to describe X_P thanks to the integral polytope P: (under some assumptions)

- with *fans* as an abstract variety
- \oplus geometric properties
- ⊖ implementation
- embedded into $\mathbb{P}^{\# (P \cap \mathbb{Z}^N) 1}$
- practical description
- ⊖ very large ambiant

Several ways to describe X_P thanks to the integral polytope P: (under some assumptions)

Ð

- with fans as an abstract variety
- geometric properties
- ⊖ implementation
- embedded into $\mathbb{P}^{\#(P \cap \mathbb{Z}^N) 1} \oplus$ practical description \ominus very large ambiant
- as a quotient of a subset of \mathbb{A}^r (where $r = \mathsf{nb}$ of facets of P) by a group G (simplicial variety)
 - \oplus more reasonable ambient
 - \oplus functions of L(D) = polynomials in r variables

Several ways to describe X_P thanks to the integral polytope P: (under some assumptions)

Ð

- with *fans* as an abstract variety
- geometric properties
- ⊖ implementation
- embedded into $\mathbb{P}^{\#(P \cap \mathbb{Z}^N)-1}$ \oplus practical description \ominus very large ambiant
- as a quotient of a subset of \mathbb{A}^r (where $r = \mathsf{nb}$ of facets of P) by a group G (simplicial variety)
 - more reasonable ambient
 - \oplus functions of L(D) = polynomials in r variables

Example: $P = \operatorname{Conv}((0,0), (1,0), (0,1), (1,1)) \subset \mathbb{R}^2$ gives $\mathbf{X}_P = \mathbb{P}^1 \times \mathbb{P}^1$:

- embedded in \mathbb{P}^3 by the Segre map: $(x_0, x_1, y_0, y_1) \mapsto (x_i y_j)$,
- defined as the quotient of $(\mathbb{A}^2 \smallsetminus \{(0,0)\})^2 \subset \mathbb{A}^4$ by the group $(\overline{\mathbb{F}}^*)^2$ via the action

$$(\lambda,\mu)\cdot(x_0,x_1,y_0,y_1)=(\lambda x_0,\lambda x_1,\mu y_0,\mu y_1)$$

Functions= bihomogeneous polynomials

	Handling a toric variety			
00	00			

For classical toric codes, an integral point $m \in P \cap \mathbb{Z}^N$ gives a monomial $\chi^m = X_1^{m_1} \dots X_N^{m_N}$. In the projective case, it corresponds to a monomial $\chi^{(m,P)} \in \mathbb{F}_q[\mathbf{X}_1, \dots, \mathbf{X}_r]$.

$$L(D) = \operatorname{Span}\left(\chi^{\langle m, P \rangle} \mid m \in P \cap \mathbb{Z}^N\right)$$

We can go from χ^m to $\chi^{(m,P)}$ via homogenization process.

	Handling a toric variety						
00	00	0	000	0	0	0000	0

For classical toric codes, an integral point $m \in P \cap \mathbb{Z}^N$ gives a monomial $\chi^m = X_1^{m_1} \dots X_N^{m_N}$. In the projective case, it corresponds to a monomial $\chi^{(m,P)} \in \mathbb{F}_q[\mathbf{X}_1, \dots, \mathbf{X}_r]$.

$$L(D) = \operatorname{Span}\left(\chi^{\langle m, P \rangle} \mid m \in P \cap \mathbb{Z}^N\right)$$

We can go from χ^m to $\chi^{(m,P)}$ via homogenization process. Example on \mathbb{P}^2 :

- $\chi^m = x_1^0 x_2^1 = x_2.$
- $\chi^{\langle m, P \rangle} = X_2 \leftarrow \text{homogenized in degree } 1$
- $\chi^{\langle m, 2P \rangle} = X_0 X_2 \leftarrow \text{homogenized in degree } 2$

	Handling a toric variety						
00	00	0	000	0	0	0000	0

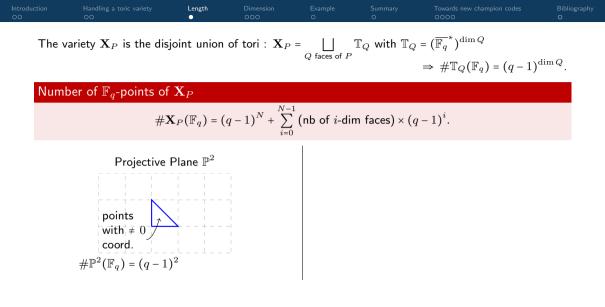
For classical toric codes, an integral point $m \in P \cap \mathbb{Z}^N$ gives a monomial $\chi^m = X_1^{m_1} \dots X_N^{m_N}$. In the projective case, it corresponds to a monomial $\chi^{(m,P)} \in \mathbb{F}_q[\mathbf{X}_1, \dots, \mathbf{X}_r]$.

$$L(D) = \operatorname{Span}\left(\chi^{\langle m, P \rangle} \mid m \in P \cap \mathbb{Z}^N\right)$$

We can go from χ^m to $\chi^{(m,P)}$ via homogenization process. Example on \mathbb{P}^2 :

•
$$\chi^{(m,2P)} = X_0 X_2 \leftarrow \text{homogenized in degree } 2$$

$$\mathsf{PC}_P = \mathrm{Span}\left\{\left(\chi^{(m,P)}(\mathbf{x})\right)_{\mathbf{x}\in\mathcal{P}}\in\mathbb{F}_q^n, \ m\in P\cap\mathbb{Z}^N\right\} \text{ where } n = \#\mathbf{X}_P(\mathbb{F}_q).$$



< = > < = > < = > < = >

The variety
$$\mathbf{X}_P$$
 is the disjoint union of tori : $\mathbf{X}_P = \bigcup_{Q \text{ faces of } P} \mathbb{T}_Q$ with $\mathbb{T}_Q = (\overline{\mathbb{F}_q}^*)^{\dim Q}$
 $\Rightarrow \#\mathbb{T}_Q(\mathbb{F}_q) = (q-1)^{\dim Q}$.
Number of \mathbb{F}_q -points of \mathbf{X}_P
 $\#\mathbf{X}_P(\mathbb{F}_q) = (q-1)^N + \sum_{i=0}^{N-1} (\text{nb of } i\text{-dim faces}) \times (q-1)^i$.
Projective Plane \mathbb{P}^2
 $\#\mathbb{P}^2(\mathbb{F}_q) = (q-1)^2 + 3(q-1)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The variety
$$\mathbf{X}_P$$
 is the disjoint union of tori : $\mathbf{X}_P = \bigcup_{Q \text{ faces of } P} \mathbb{T}_Q$ with $\mathbb{T}_Q = (\overline{\mathbb{F}_q}^*)^{\dim Q}$
 $\Rightarrow \#\mathbb{T}_Q(\mathbb{F}_q) = (q-1)^{\dim Q}$.
Number of \mathbb{F}_q -points of \mathbf{X}_P
 $\#\mathbf{X}_P(\mathbb{F}_q) = (q-1)^N + \sum_{i=0}^{N-1} (\text{nb of } i\text{-dim faces}) \times (q-1)^i$.
Projective Plane \mathbb{P}^2
 $\#\mathbb{P}^2(\mathbb{F}_q) = (q-1)^2 + 3(q-1) + 3$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$\frac{\text{Production}}{\text{OC}} \xrightarrow{\text{Parading a toric variety}} \underbrace{\text{Length}}_{\text{OC}} \xrightarrow{\text{Dimension}}_{\text{OC}} \underbrace{\text{Summary}}_{\text{OC}} \xrightarrow{\text{Deverde a revert champion code}}_{\text{OCO}} \xrightarrow{\text{OCO}}_{\text{OCO}} \underbrace{\text{OCO}}_{\text{OCO}} \xrightarrow{\text{OCO}}_{\text{OCO}} \underbrace{\text{OCO}}_{\text{OCO}} \xrightarrow{\text{OCO}}_{\text{OCO}} \underbrace{\text{OCO}}_{\text{OCO}} \xrightarrow{\text{OCO}}_{\text{OCO}} \xrightarrow{\text{OCO}}_{\text{OCO}} \underbrace{\text{OCO}}_{\text{OCO}} \xrightarrow{\text{OCO}}_{\text{OCO}} \underbrace{\text{OCO}}_{\text{OCO}} \xrightarrow{\text{OCO}}_{\text{OCO}} \xrightarrow{\text{OCO}} \xrightarrow{\text{OCO}}_{\text{OCO}} \xrightarrow{\text{OCO}}_{\text{OCO}} \xrightarrow{\text{OCO}}_{\text{OCO}} \xrightarrow{\text{OCO}}_{\text{OCO}} \xrightarrow{\text{OCO}} \xrightarrow{\text{OCO}}_{\text{OCO}} \xrightarrow{\text{OCO}} \xrightarrow{\text{OCO}}_{\text{OCO}} \xrightarrow{\text{OCO}}_{\text{OCO}} \xrightarrow{\text{OCO}}_{\text{OCO}} \xrightarrow{\text{OCO}}_{\text{OCO}} \xrightarrow{\text{OCO}} \xrightarrow{\text{OCO}} \xrightarrow{\text{OCO}}_{\text{OCO}} \xrightarrow{\text{OCO}}_{\text{OCO}} \xrightarrow{\text{OCO}}_{\text{OCO}} \xrightarrow{\text{OCO}} \xrightarrow{\text{OCO}}_{\text{OCO}} \xrightarrow{\text{OCO}} \xrightarrow{\text{OCO}}_{\text{OCO}} \xrightarrow{\text{OCO}} \xrightarrow{\text{OCO$$

		Dimension ●00		
Dimension of c	classical toric code			

"Recall": The integral points of P give a monomial basis of C_P and PC_P .

Integral point
$$m \in P \cap \mathbb{Z}^N \Leftrightarrow \operatorname{ev}\left(\chi^{(m,P)}\right) \in \mathsf{C}_P/\mathsf{P}\mathsf{C}_P$$

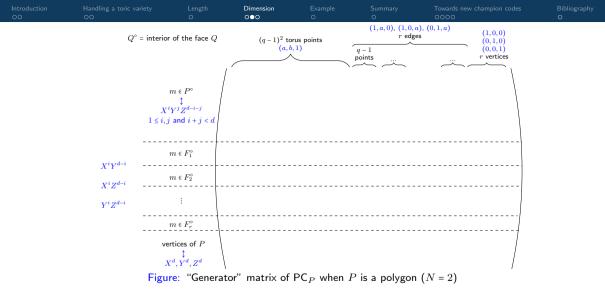
CLASSICAL CASE: on \mathbb{F}_q^* , $x^{q-1} = 1$. For two elements $(u, v) \in (\mathbb{Z}^N)^2$, we write $u \sim v$ if $u - v \in (q-1)\mathbb{Z}^N$.

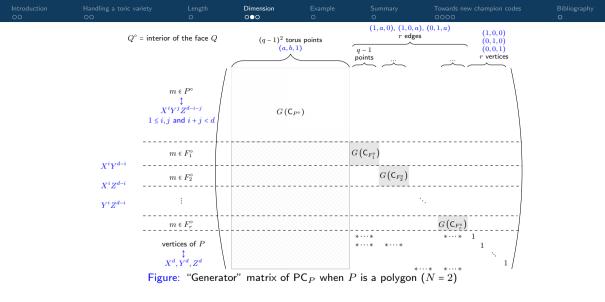
Theorem [Ruano 07]

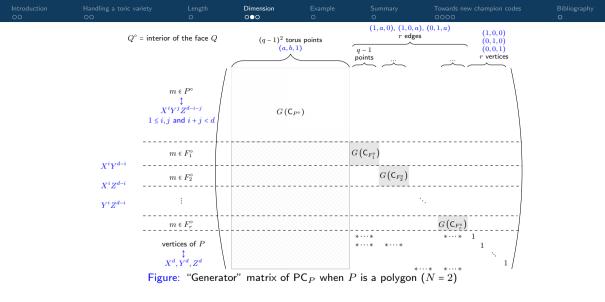
•
$$\chi^{(m,P)}(\mathbf{t}) = \chi^{(m',P)}(\mathbf{t})$$
 for every $\mathbf{t} \in \mathbb{T}_P(\mathbb{F}_q) \Leftrightarrow m \sim m'$,

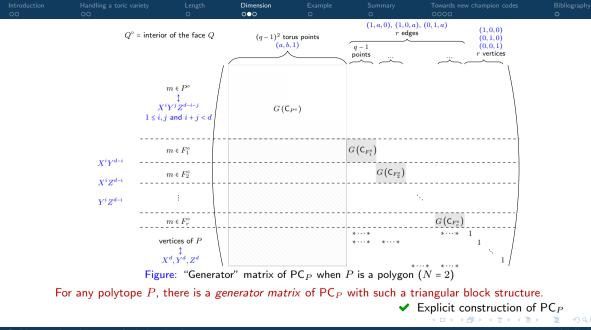
• If \overline{P} is a set of representatives of $P \cap \mathbb{Z}^N$ modulo ~, then $\{(\chi^{\langle \overline{m}, P \rangle}(\mathbf{t}), \mathbf{t} \in \mathbb{T}_P(\mathbb{F}_q) \mid \overline{m} \in \overline{P}\}$ is a basis of C_P .

Not so nice when homogenizing! On $\mathbb{P}^1(\mathbb{F}_q)$, $X_0^q \neq X_0 X_1^{q-1}$ at [1:0].









			Dimension			
00			000		0000	
Dimension and	d reduction modulo g	l - 1				

Dimension of PC_P = rank of the previous matrix = $\sum_Q \dim C_{Q^\circ}$

PROJECTIVE CASE: Reduction of P face by face.

On $P \cap \mathbb{Z}^N$, we write $m \sim_P m'$ if there exists a face Q of P s.t. $m, m' \in Q^\circ$ and $m - m' \in (q - 1)\mathbb{Z}^N$.

Theorem [N. 20]

- $\chi^{\langle m, P \rangle}(\mathbf{x}) = \chi^{\langle m', P \rangle}(\mathbf{x})$ for every $\mathbf{x} \in \mathbf{X}_P(\mathbb{F}_q) \Leftrightarrow m \sim_P m'$,
- If $\operatorname{Red}(P)$ is a set of representatives of $P \cap \mathbb{Z}^N$ modulo \sim_P , then $\left\{ \operatorname{ev}_P(\chi^{(\overline{m},P)} | \overline{m} \in \operatorname{Red}(P) \right\}$ is a basis of PC_P .

✓ Dimension of PC_P

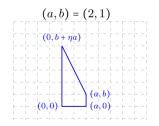
Let $a, b, \eta \in \mathbb{N}^*$ and $P(\eta) = \operatorname{Conv}((0,0), (a,0), (a,b), (0, b + \eta a)).$ $\rightarrow \mathbf{X}_{P(\eta)}$ called a *Hirzebruch surface* + a divisor of *bidegree* (a,b).

$$\mathbf{X}_{P(\eta)}(\mathbb{F}_q) = (q-1)^2 + 4(q-1) + 4 = (q+1)^2.$$

ightarrow Reduce P modulo q - 1 = 6.

Let us compare the dim PC_P and dim C_P on \mathbb{F}_7 for different (a, b).

 \vdash Reduce the interior of each face modulo q - 1 = 6.



・ロト ・同ト ・ヨト ・ヨ

Introduction Handling a toric variety Length Dimension Example Summary Towards new champion codes Bibliography 00 00 00 \bullet 000 \bullet 0000 0 Example of computation of the dimension of PC_P and C_P

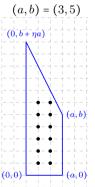
Let $a, b, \eta \in \mathbb{N}^*$ and $P(\eta) = \operatorname{Conv}((0,0), (a,0), (a,b), (0, b + \eta a)).$ $\rightarrow \mathbf{X}_{P(\eta)}$ called a *Hirzebruch surface* + a divisor of *bidegree* (a,b).

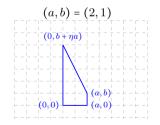
$$\mathbf{X}_{P(\eta)}(\mathbb{F}_q) = (q-1)^2 + 4(q-1) + 4 = (q+1)^2.$$

ightarrow Reduce P modulo q - 1 = 6.

Let us compare the dim PC_P and dim C_P on \mathbb{F}_7 for different (a, b).

 \vdash Reduce the interior of each face modulo q - 1 = 6.





・ロト ・同ト ・ヨト ・ヨ

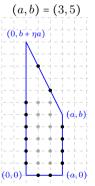
Let $a, b, \eta \in \mathbb{N}^*$ and $P(\eta) = \operatorname{Conv}((0,0), (a,0), (a,b), (0, b + \eta a)).$ $\rightarrow \mathbf{X}_{P(\eta)}$ called a *Hirzebruch surface* + a divisor of *bidegree* (a,b).

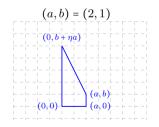
$$\mathbf{X}_{P(\eta)}(\mathbb{F}_q) = (q-1)^2 + 4(q-1) + 4 = (q+1)^2.$$

ightarrow Reduce P modulo q - 1 = 6.

Let us compare the dim PC_P and dim C_P on \mathbb{F}_7 for different (a, b).

 \vdash Reduce the interior of each face modulo q - 1 = 6.





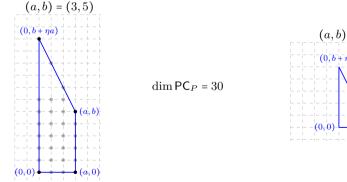
・ロト ・同ト ・ヨト ・ヨ

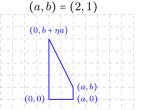
Let $a, b, \eta \in \mathbb{N}^*$ and $P(\eta) = \operatorname{Conv}((0,0), (a,0), (a,b), (0, b + \eta a)).$ $\rightarrow \mathbf{X}_{P(\eta)}$ called a *Hirzebruch surface* + a divisor of *bidegree* (a,b).

$$\mathbf{X}_{P(\eta)}(\mathbb{F}_q) = (q-1)^2 + 4(q-1) + 4 = (q+1)^2.$$

ightarrow Reduce P modulo q - 1 = 6.

Let us compare the dim PC_P and dim C_P on \mathbb{F}_7 for different (a, b).



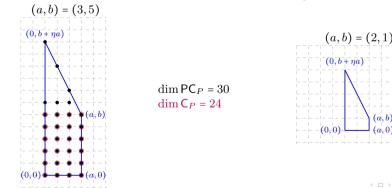


Let $a, b, \eta \in \mathbb{N}^*$ and $P(\eta) = \operatorname{Conv}((0,0), (a,0), (a,b), (0, b + \eta a)).$ $\rightarrow \mathbf{X}_{P(\eta)}$ called a *Hirzebruch surface* + a divisor of *bidegree* (a,b).

$$\mathbf{X}_{P(\eta)}(\mathbb{F}_q) = (q-1)^2 + 4(q-1) + 4 = (q+1)^2.$$

ightarrow Reduce P modulo q - 1 = 6.

Let us compare the dim PC_P and dim C_P on \mathbb{F}_7 for different (a, b).

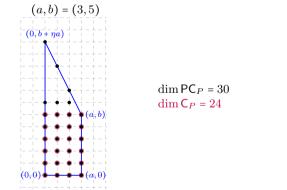


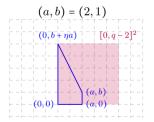
Let $a, b, \eta \in \mathbb{N}^*$ and $P(\eta) = \operatorname{Conv}((0,0), (a,0), (a,b), (0, b + \eta a)).$ $\rightarrow \mathbf{X}_{P(\eta)}$ called a *Hirzebruch surface* + a divisor of *bidegree* (a,b).

$$\mathbf{X}_{P(\eta)}(\mathbb{F}_q) = (q-1)^2 + 4(q-1) + 4 = (q+1)^2.$$

ightarrow Reduce P modulo q - 1 = 6.

Let us compare the dim PC_P and dim C_P on \mathbb{F}_7 for different (a, b).



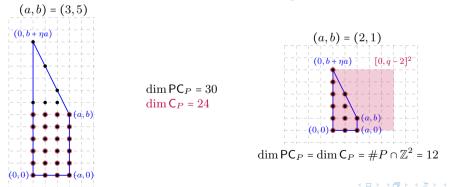


Let $a, b, \eta \in \mathbb{N}^*$ and $P(\eta) = \operatorname{Conv}((0,0), (a,0), (a,b), (0, b + \eta a)).$ $\rightarrow \mathbf{X}_{P(\eta)}$ called a *Hirzebruch surface* + a divisor of *bidegree* (a,b).

$$\mathbf{X}_{P(\eta)}(\mathbb{F}_q) = (q-1)^2 + 4(q-1) + 4 = (q+1)^2.$$

ightarrow Reduce P modulo q - 1 = 6.

Let us compare the dim PC_P and dim C_P on \mathbb{F}_7 for different (a, b).



			Summary •	
Minimum dista	ance			

Lower bound on the minimum distance of PC_P more technical [CN16, Nar19] *Key ingredient:* (theorical) **Gröbner basis** of the vanishing ideal of $\mathbf{X}_P(\mathbb{F}_q)$ \rightarrow no problem from the exponential growth in #variables of the complexity of its actual computation.

In conclusion, this work provides a general framework for studying AG codes on toric varieties. Given a polytope P, we can

- compute exactly the dimension of the code PC_P,
- get a lowerbound on the minimum distance (not always sharp),

provided that we have a good algorithm to determine the integral points of a polytope.

 $\tilde{O}\left(\left(s^{\lceil \frac{N}{2} \rceil} + V\right)\log \delta\right)$ for a polytope of dim. N of vol. V with s vertices, and where δ is the maximum modulus of the coordinates of the vertices of P [SV13, Prop. 3.5].

			Towards new champion codes	
			0000	

Brown and Kasprzyk [BK13] systematically investigated (generalized) toric codes associated to small polygons \rightarrow good codes acheiving/beating the best-known parameters.

Given a champion toric code C_P ,

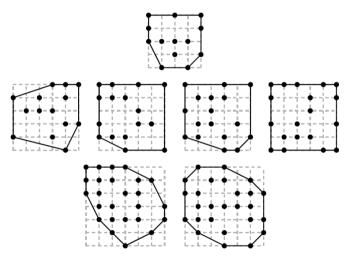
- \ominus PC_P is unlikely to be a champion code itself,
- \oplus indicate how to extend C_P while keeping good parameters.

Champion generalizing toric code [49, 14, 26] over \mathbb{F}_8 [BK13] Cannot consider its convex hull (simplicial toric variety on \mathbb{F}_8) \rightarrow projective toric code on \mathbb{X}_P but PC_P is [87, 14, 34]₈.

Let us puncture this code!

Figure: A polygon containing the points defining a champion generalized toric code [49, 14, 26] over \mathbb{F}_8 [BK13]

						Towards new champion codes	
						0000	
7 ways to ge	et non Hamming-equi	valent (gene	eralized) [49.1	4.26] toric	codes [BK13		



			Towards new champion codes ○○●○	
What now?				

- Looking for new champion codes this way...
- Investigate properties of these codes : Local decodability [LN20],dual codes for application to secret sharing [Han16]

Thank you!

Introduction Handling a toric variety Length Dimension Example Summary Towards new champion codes Bibliography 00 00 00 000

KEY INGREDIENT: Gröbner basis of the vanishing ideal of $\mathbf{X}_{P}(\mathbb{F}_{q})$ [CN16, Nar19] • Choose a nice total order < on \mathbb{Z}^{N} (addition compatibility) : lexicographic

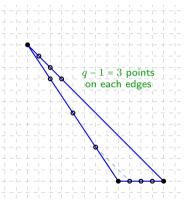
- Find λ s.t. for every face Q of λP , $\# \operatorname{Red}(Q^\circ) = (q-1)^{\dim Q}$ (*i.e.* $\mathsf{PC}_{\lambda P} = \mathbb{F}_q^n$)
- Compute Red(P) and Red(λP) taking into account the order.
 Representative = smallest element wrt < among a class

modulo $\sim_{(\lambda)P}$

+ (+0-, 0-)-**\--`+**

KEY INGREDIENT: Gröbner basis of the vanishing ideal of $\mathbf{X}_P(\mathbb{F}_q)$ [CN16, Nar19] • Choose a nice total order < on \mathbb{Z}^N (addition compatibility) : lexicographic

♥ Compute $\operatorname{Red}(P)$ and $\operatorname{Red}(\lambda P)$ taking into account the order.



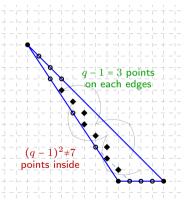
KEY INGREDIENT: Gröbner basis of the vanishing ideal of $\mathbf{X}_P(\mathbb{F}_q)$ [CN16, Nar19] • Choose a nice total order < on \mathbb{Z}^N (addition compatibility) : lexicographic

♥ Compute $\operatorname{Red}(P)$ and $\operatorname{Red}(\lambda P)$ taking into account the order.



KEY INGREDIENT: Gröbner basis of the vanishing ideal of $\mathbf{X}_P(\mathbb{F}_q)$ [CN16, Nar19] • Choose a nice total order < on \mathbb{Z}^N (addition compatibility) : lexicographic

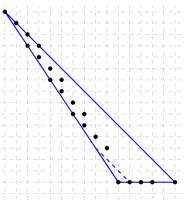
♥ Compute $\operatorname{Red}(P)$ and $\operatorname{Red}(\lambda P)$ taking into account the order.



Introduction Handling a toric variety Length Dimension Example Summary Towards new champion codes Bibliography 00 00 00 000

KEY INGREDIENT: Gröbner basis of the vanishing ideal of $\mathbf{X}_{P}(\mathbb{F}_{q})$ [CN16, Nar19] • Choose a nice total order < on \mathbb{Z}^{N} (addition compatibility) : lexicographic

♥ Compute $\operatorname{Red}(P)$ and $\operatorname{Red}(\lambda P)$ taking into account the order.



Introduction Handling a toric variety Length Dimension Example Summary Towards new champion codes Bibliography 00 00 00 000

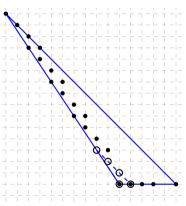
KEY INGREDIENT: Gröbner basis of the vanishing ideal of $\mathbf{X}_{P}(\mathbb{F}_{q})$ [CN16, Nar19] • Choose a nice total order < on \mathbb{Z}^{N} (addition compatibility) : lexicographic

♥ Compute $\operatorname{Red}(P)$ and $\operatorname{Red}(\lambda P)$ taking into account the order.

Representative = smallest element wrt < among a class modulo $\sim_{(\lambda)P}$

Theorem [N. 20]

$$d(\mathsf{PC}_P) \geq \min_{m \in \mathrm{Red}_{<}(P)} \# \left((m + P_{\mathsf{surj}} - P) \cap \mathrm{Red}_{<}(P_{\mathsf{surj}}) \right).$$



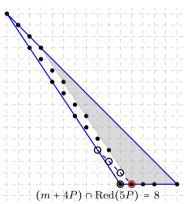
KEY INGREDIENT: Gröbner basis of the vanishing ideal of $\mathbf{X}_{P}(\mathbb{F}_{q})$ [CN16, Nar19] • Choose a nice total order < on \mathbb{Z}^{N} (addition compatibility) : lexicographic

♥ Compute $\operatorname{Red}(P)$ and $\operatorname{Red}(\lambda P)$ taking into account the order.

Representative = smallest element wrt < among a class modulo $\sim_{(\lambda)P}$

Theorem [N. 20]

$$d(\mathsf{PC}_P) \geq \min_{m \in \mathrm{Red}_{<}(P)} \# \left((m + P_{\mathsf{surj}} - P) \cap \mathrm{Red}_{<}(P_{\mathsf{surj}}) \right).$$



Introduction Handling a toric variety Length Dimension Example Summary Towards new champion codes Bibliography 00 00 00 000

KEY INGREDIENT: Gröbner basis of the vanishing ideal of $\mathbf{X}_{P}(\mathbb{F}_{q})$ [CN16, Nar19] • Choose a nice total order < on \mathbb{Z}^{N} (addition compatibility) : lexicographic

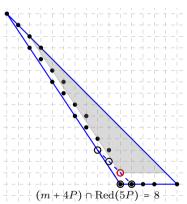
♥ Compute $\operatorname{Red}(P)$ and $\operatorname{Red}(\lambda P)$ taking into account the order.

Representative = smallest element wrt < among a class modulo $\sim_{(\lambda)P}$

 $\rightarrow \mathsf{PC}_P$ is $[21, 4, 8]_4$

Theorem [N. 20]

$$d(\mathsf{PC}_P) \ge \min_{m \in \mathrm{Red}_{<}(P)} \# \left((m + P_{\mathsf{surj}} - P) \cap \mathrm{Red}_{<}(P_{\mathsf{surj}}) \right).$$



					Bibliography
00	00	0			•

Gavin Brown and Alexander M. Kasprzyk.

Seven new champion linear codes.

Lms Journal of Computation and Mathematics, 16:109–117, 2013.

Cicero Carvalho and Victor G. L. Neumann.

Projective Reed-Muller type codes on rational normal scrolls. *Finite Fields Appl.*, 37:85–107, 2016.

Johan P. Hansen.

Toric varieties Hirzebruch surfaces and error-correcting codes. *Appl. Algebra Engrg. Comm. Comput.*, 13(4):289–300, 2002.

Johan P. Hansen.

Secret sharing schemes with strong multiplication and a large number of players from toric varieties.

Contemporary Mathematics, 03 2016.

Julien Lavauzelle and Jade Nardi.

Weighted lifted codes: Local correctabilities and application to robust private information retrieval.

IEEE Transactions on Information Theory, pages 1–1, 2020.

			Bibliography
			•

On *m*-dimensional toric codes, 2005.

💧 Jade Nardi.

Algebraic geometric codes on minimal hirzebruch surfaces. *Journal of Algebra*, 535:556 – 597, 2019.

Diego Ruano.

On the parameters of *r*-dimensional toric codes. *Finite Fields Appl.*, 13(4):962–976, 2007.

Ivan Soprunov and Jenya Soprunova.

Toric surface codes and Minkowski length of polygons. *SIAM J. Discrete Math.*, 23(1):384–400, 2008/09.

Steven I Sperber and John Voight.

Computing zeta functions of nondegenerate hypersurfaces with few monomials.

Lms Journal of Computation and Mathematics, 16:9–44, 2013.