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e Context, problem, state of the art
e Overview of the approach and complexity

e Obstacles and related spin-off results
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Context Xlim W, S

¢ field K, algebraic complexity (counting operations in K)

e w: exponent of MatMul over K: m x m by m x m in O(m®)

Reductions of most problems to matrix multiplication
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Context Xtim v S

¢ field K, algebraic complexity (counting operations in K)

e w: exponent of MatMul over K: m x m by m x m in O(m®)
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CharPoly = O(MatMul) ?
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. uersite <, UGA
Problem and result Xtim Wi & 222

Characteristic polynomial. ..

given M € K™*™ compute det(xI,, — M) € K[x]

¢ deterministic, general: O(m® log(m)) [Keller-Gehrig 1985]
¢ deterministic, generic input: O(m<) [Giorgi-Jeannerod-Villard 2003]
¢ randomized, general: O(m®) [P--Storjohann 2007]

...in the time of matrix multiplication

Deterministic charpoly algorithm in O(m®)

using any MatMul algorithm in O(m®) with2 < w < 3

(i.e. not relying on a O(m® <) MatMul algorithm. . .)
arXiv: 2010.04662 / HAL: hal-02963147
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https://arxiv.org/abs/2010.04662
https://hal.archives-ouvertes.fr/hal-02963147

.
Xl W, S

Problem already solved?

16.6* The Characteristic Polynomial

In Sect. 16.4 we saw that computing the determinant is about as hard as matrix
multiplication. In this section we shall see that even the problem of computing all
coefficients of the characteristic polynomial of a matrix has the same exponent as
matrix multiplication.
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Problem already solved? Xlim W §

16.6* The Characteristic Polynomial

In Sect. 16.4 we saw that computing the determinant is about as hard as matrix
multiplication. In this section we shall see that even the problem of computing all
coefficients of the characteristic polynomial of a matrix has the same exponent as
matrix multiplication.

e Definition of w: infimum? feasible?
® Which MatMul algorithm(s) can be used in the CharPoly algorithm?

For any w feasible (as of today),

there is a MatMul algorithm in O(m®—¢) for some ¢ > 0

= Keller-Gehrig’s CharPoly algorithm is in O(m®~¢log(m)) C O(m®)
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i i drierte, ¢ Y
Framework for complexity Xlim % ‘o

Typical introduction of w in computer algebra:

“Let w be such that m x m MatMul costs O(m®) field operations”

Matrix multiplication over K

e choose a MatMul algorithm with complexity O(m<®)
e use this specific algorithm for all arising MatMul instances

Our requirement: 2 < w < 3 (we accept w = 2.1, if you provide the MatMul algorithm)
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i i drhemte, S
Framework for complexity Xlim %

Typical introduction of w in computer algebra:

“Let w be such that m x m MatMul costs O(m®) field operations”

Matrix multiplication over K

e choose a MatMul algorithm with complexity O(m<®)
e use this specific algorithm for all arising MatMul instances

Our requirement: 2 < w < 3 (we accept w = 2.1, if you provide the MatMul algorithm)

Univariate polynomial multiplication over K[x]

e choose a PolMul algorithm with complexity O(M(d))
e use this specific algorithm for all arising PolMul instances

Requirement: M(d) is superlinear and submultiplicative and reasonably good
2M(d) < M(24) M(di1d2) < M(d;)M(d2) M(d) € O(dw—1¢) forsome ¢ > 0

Requirement: m x m matrices over K[x]<4 multiplied in O(m“M(d)) field ops

All these requirements are satisfied by the classical MatMul/PolMul algorithms
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i i dohmte, S YCA
Charpoly via K-linear algebra Xtim %

Traces of Powers: O(m#*) or O(m«+1)
. [LeVerrier 1840] [Faddeev’'49, Souriau’48, ...]
. used by [Csanky’75] to prove NC? membership

Determinant expansion: O(m*)
. [Samuelson’42, Berkowitz'84]
. suited to division free algorithms [Abdlejacued-Malaschonok'01, Kaltofen-Villard’05]

Krylov methods: [Danilevskij'37, Keller-Gehrig’85, P--Storjohann’07]
e Deterministic O(m3) or O(m® log(m))
e Generic O(m*®)
e Las-Vegas probabilistic for large fields (K| > 2m?) O(m®)
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Charpoly via K[x]-linear algebra Xlim W S

Determinant of a matrix A € K[x]™*™ of degree d d=1

Evaluation-Interpolation: [folklore] O(m«+1)
at ~ md points: requires large enough field

Diagonalization (Smith form): [Storjohann 2003] O(m® log(m)?)
Las Vegas randomized + additional logs for small fields

Partial triangularization:

e |terative [Mulders-Storjohann 2003] O(m3)
via weak Popov form computations

¢ Divide and conquer, generic [Giorgi-Jeannerod-Villard 2003] O(m®)
diagonal of Hermite form must be 1, .. ., 1, det(A)

e Divide and conquer [N.-Labahn-Zhou 2017] O(mw)

logarithmic factors in m and d
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M universite <, UGA
Sources of log factors Xlim W & 220

In K-linear algebra

e divide and conquer with half-dimension blocks — no log(m)
e iterative approaches in m steps — sometimes no log(m) [P-Storjohann’07]
e explicit Krylov iteration: compute (v. Mv --- M™v) — log(m) x MatMul

In K[x]-linear algebra

e divide and conquer with half-dimension blocks — no log(m)
provided degrees are controlled, e.g. kernel basis [zhou-Labahn-Storjohann'12]

e divide and conquer on degree — log(d) but no log(m)
e.g. K[x]-MatMul and approximant basis [Giorgi-Jeannerod-Villard'03]

e explicit Krylov iterations here as well [x]
because base cases of recursions on degree = matrices over K e.g. [Jeannerod-N.-Schost-Villard'17]

e looking for a matrix with unpredictable, unbalanced degrees
up to ~ log(m) steps, each in dimension m x m, to uncover the degree profile [zhou-Labahn'13]
reminiscent of long Krylov chains with small dimension drop & failure to derandomize [P-Storjohann'07]

[x] typically contributes O (m® d log(m)) to the cost ~~ cannot be ignored for d = O (1)
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Outline i W, S YEA

e Overview of the approach and complexity
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: : T i foierste, §
Partial block triangularization Xlim % ‘

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, N.-Labahn-Zhou 2017]
Triangularization of m x m matrix A using m/2 x m/2 blocks

not computed % % All Ao R %
el i
row basis of [4!]

Property: det(A) = det(R) det(B)
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i W, S YA

Generic case without log factor

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, N.-Labahn-Zhou 2017]
Triangularization of m x m matrix A using m/2 x m/2 blocks

not computed % % A A, R %
el i
row basis of [4!]

Property: det(A) = det(R) det(B)

Generic input = det(A) without log(m)

A; and Az are coprime = R =1, , = det(A) = det(B)

e Compute kernel ; deduce B by MatMul

® Recursively, compute det(B), return it

A and [K; K] have degree d = B has degree 2d: /controlled total degree
GCD in <M’(d) € O(M(d)log(d)) f.ops.

total cost: O(M®M’(d) + (m/2)*M’(2d) +---+ M/'(md)) C O(m®M’(d))
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i W, S YA

General case with log factor

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, N.-Labahn-Zhou 2017]
Triangularization of m x m matrix A using m/2 x m/2 blocks

not computed % % A A, R %
el i
row basis of [4!]

Property: det(A) = det(R) det(B)

Matrix degree not controlled: degree of B up to D =} rdeg(A) < md
but controlled average row degree: at most %

General input = det(A) in O(m® 2)

m

e Compute kernel ; deduce B by MatMul
e Compute row basis R O(m® ) with log(m)

¢ Recursively, compute det(R) and det(B), return det(R) det(B)
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Universi te <
de Limoges Kyt

Be lazy: if hard to compute, don’t compute Xtim %

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, N.-Labahn-Zhou 2017]
Triangularization of m x m matrix A using m/2 x m/2 blocks

not computed % « A A, R x
I tara v i i
row basis of [4!]

Property: det(A) = det(R) det(B)

Obstacle: removing log factors in row basis computation
= solution: remove row basis computation

Lnpp O (A Ayl (A1 A
As Ayl | O
Property: det(A) = det(A;)det(B)/ det(K>)
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Further obstacles (brought by laziness) Xlim W & 220
I, 0][A As] As
Ki As Ag| |0
Property: det(A) = det(A;) det(B)/ det(K>)

i no log(m) in the computation of A4, B, K,
# requires nonsingular Ay, otherwise det(K;) =0

# 3 recursive calls in matrix size m/2 is 4, but requires > rdeg(A;) < D/2
otherwise degree control is too weak. (this implies 3~ rdeg (K2) < D/2)
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Further obstacles (brought by laziness) Xlim W & 220

I 0] A1 Ayl A,
K; As Ayl | O
Property: det(A) = det(A;) det(B)/ det(K>)

i no log(m) in the computation of A4, B, K,
# requires nonsingular Ay, otherwise det(K;) =0

# 3 recursive calls in matrix size m/2 is 4, but requires > rdeg(A;) < D/2
otherwise degree control is too weak. (this implies 3~ rdeg (K2) < D/2)

Solution: require A in weak Popov form
(the characteristic matrix A = xI,, — M is in Popov form)

i implies A; nonsingular and > rdeg(A;) < D/2 up to easy transformations
i both A; and B are also in weak Popov form = suitable for recursive calls

#» K is in “shifted reduced” form... find weak Popov P with same determinant
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Complexity

e(m. D) <2€ (’;‘ {

where: M’(d) = GCD(d

D __ degdet
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) € O(M(d)log(d))
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. H W ouierse, S
Complexity Xtim ¥ ¥

m | D m D
< _ . _ w ! _
G(m,D)\2G(2,{2J) C(z,D)JrO(m M( ))
where: M’(d) = GCD(d) € O(M(d)log(d))

D __ degdet __
mw = = = avgrow degree

m, D

.o X
v 1:L%J N 12
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i i Y ocimse, S REA
Complexity Xlim ¥ « g

m | D m D
< A Nl o wpnp/ [ 2
G(m,D)\2G(2,{2J) C(z,D)+O<m M (m)>
where: M’ (d) = GCD(d) € O(M(d)log(d))

D _ degdet

= =~ = avg row degree

¥ N \ 7 h
/7 N/
D S D
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i i goterste S YGA
Complexity Xlim W & 224

m | D m D
< _ . _ w ! _
G(m,D)\2G(2,{2J) C(z,D)JrO(m M( ))
where: M’(d) = GCD(d) € O(M(d)log(d))

D __ degdet __
mw = = = avgrow degree 1

1 6 8
7o 1T

/7 \ 4 \ / \
// \\ // \\ // \\ // \\
4 \ ’ \ 2j wy s \ 7 \
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i i goterste S YGA
Complexity Xlim W & 224
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i i goivrsne, G UCA
Complexity Xlim Wi S RSA

oo [2] e (200w (2)

where: M’ (d) = GCD(d) € O(M(d)log(d))

D __ degdet __
mw = = = avgrow degree 1

fore > 0s.t. M(d) = O(dw—1¢)
O(m*M'(2))
1 2
1 2

1 26 8

. / 1, L%J \, 1, LQEP-J O(mlog23)
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i i Yniverste 50 YGA
Complexity Xlim Wi S RSA

e(m,D) <2¢ (m, {DD e (E,D)m <m“’M’(D)> <0 (m“’M’(D>)
2 2 2 m m
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R O(meM/(2))
1 2
1 2
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) 1 2 2 4 A
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e Obstacles and related spin-off results
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i i Yotersne S Y
Hermite and Popov forms Xtim ¥ ¥ =

A € K[x]™*™ nonsingular

elementary row transformations

. triangular
. column normalized

16 4

15 0 3 7

15 0 1 5 3
15 0 36 1 2
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i dohmte, S YCA
Hermite and Popov forms X(im %

A € K[x]™*™ nonsingular

elementary row transformations

Popov form
. triangular . row reduced / distinct pivots
. column normalized . column normalized
16 4 4 3 3 3 7 0 1 5
15 0 3.7 3 4 3 3 0 1 0
15 0 1 5 3 3 3 4 3 2
15 0 3 6 1 2 3 3 3 4 6 0 1 6

Invariant: D = deg(det(A)) =44+7+342=74+1+2+6
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Université \§I‘ EJ

Hermite and Popov forms Xlim Wi
A € K[x]™*™ nonsingular

elementary row transformations

Popov form
. triangular . row reduced / distinct pivots
. column normalized . column normalized
16 4 4 3 3 3 7 0 1 5
15 0 3.7 3 4 3 3 0 1 0
15 0 1 5 3 3 3 4 3 2
15 0 3 6 1 2 3 3 3 4 6 0 1 6

ositlon over term . . term over ition
P reduced Grobner basis 74

K[x]-module M c K[x]'*™ of rank m
Invariant: D = deg(det(A)) =4+7+3+2=7+1+2+6 = dimg(K[x]**™/M)
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Université UCA

Hermite and Popov forms Xlim W & £5
A € K[x]™*™ nonsingular

elementary row transformations

Popov form
. triangular . row reduced / distinct pivots
. column normalized . column normalized
16 4 4 3 3 3 7 0 1 5
15 0 3.7 3 4 3 3 0 1 0
15 0 1 5 3 3 3 4 3 2
15 0 3 6 1 2 3 3 3 4 6 0 1 6

ositlon over term . . term over ition
P reduced Grobner basis P

K[x]-module M c K[x]}*™ of rank m

Invariant: D = deg(det(A)) =4+7+3+2=7+1+2+6 = dimg(K[x]**™/M)

Weak Popov form
not column normalized =

Deterministic charpoly in the time of matrix multiplication

minimal, non-reduced, t.0.p.-Grébner basis
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Shifted forms Xlim W S

Shift: integer tuple s = (s1, ..., sm) acting as column weights
~ connects Popov and Hermite forms:

4 3 3 3 7 0 1 5
=(0,0,0,0) 3 4 3 3 0 1 0
Popov 3 3 43 2

3 3 3 4/ [6 0 1 6]

7 4 2 0] [8 5 1
=(0,2,4,6) 6 5 2 0 7 6 1
s-Popov 6 4 30

6 4 2 1] [0 1 0]

16 4

=(0,D,2D,3D) 15 0 3 7

Hermite 15 0 1 5 3

15 0 36 1 2

e shifts arise naturally in algorithms (approximants, kernel, .. .)

e they allow one to specify non-uniform degree constraints
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Xlim W S«

Back to our obstacles: easy ones
Recall: A = [ 4! 22] in weak Popov form, we want:

® A; nonsingular: ok by definition
(all principal submatrices of A are weak Popov = are nonsingular)

* > rdeg(A1) < D/2: either ok for A, or ok for [4* 23]
(almost weak Popov. .. easily transformed into it, with same determinant)
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Back to our obstacles: easy ones Xlim B S

Recall: A = [ 4! 22] in weak Popov form, we want:

® A; nonsingular: ok by definition
(all principal submatrices of A are weak Popov = are nonsingular)

* > rdeg(A1) < D/2: either ok for A, or ok for [4* 23]
(almost weak Popov. .. easily transformed into it, with same determinant)

Shifts in kernel basis computation

[K; K] kernel basis of [4*] computed in rdeg(A)-weak Popov form:
cost , > rdeg(K,) < D/2, andKj, in s-weak Popov form

D =) rdeg(A) = degdet(A) s =rdeg(A4) = last m /2 entries of rdeg (A)

Using the shift rdeg(A) (and s) has many crucial advantages:
o towards correctness: product B = [K; Ko][4*] is in 0-weak Popov form
e towards efficiency: implies small degrees in K,

and both for kernel and product B
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M Yniversite < UCA
Back to our obstacles: easy ones Xlim W & 220

Recall: A = [ 4! 22] in weak Popov form, we want:

® A; nonsingular: ok by definition
(all principal submatrices of A are weak Popov = are nonsingular)

* > rdeg(A1) < D/2: either ok for A, or ok for [4* 23]
(almost weak Popov. .. easily transformed into it, with same determinant)

Shifts in kernel basis computation
[K; K] kernel basis of [ﬁ;] computed in rdeg (A )-weak Popov form:
cost , > rdeg(K,) < D/2, andKj, in s-weak Popov form

D =) rdeg(A) = degdet(A) s =rdeg(A4) = last m /2 entries of rdeg (A)

Using the shift rdeg(A) (and s) has many crucial advantages:
o towards correctness: product B = [K; Ko][4*] is in 0-weak Popov form
e towards efficiency: implies small degrees in K,

and both for kernel and product B

... but we cannot call the algorithm recursively on K
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Approaching the main obstacle Xlim B S

Given K, in s-weak Popov form, with s > 0
Find P in 0-weak Popov form with the same determinant

Idea 1.a: change of shift from s t0 0, i.e. P = WeakPopov(K>)

# known methods are only efficient for increasing s to a larger shift
[Jeannerod-N.-Schost-Villard’17]

Idea 1.b: normalization of Kj into its s-Popov form P
~ PT is weak Popov by construction, and det(PT) = det(P)
o amounts to a change of shift from s to —& < 0 [N.16] = same issue
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~ PT is weak Popov by construction, and det(PT) = det(P)
o amounts to a change of shift from s to —& < 0 [N.16] = same issue

Fact: K] is —t-weak Popov t =rdeg,(Ks) =s+6 >0
(for simplicity some row and column permutations are ignored)

Idea 2.a: change of shift from —t to 0, i.e. P = WeakPopov (K} )
# increasing shift, but KJ has large average rdeg (we control cdeg (K7 ) = rdeg (K»))
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Fact: K] is —t-weak Popov t =rdeg,(Ks) =s+6 >0
(for simplicity some row and column permutations are ignored)

Idea 2.a: change of shift from —t to 0, i.e. P = WeakPopov (K} )
# increasing shift, but KJ has large average rdeg (we control cdeg (K7 ) = rdeg (K»))

Idea 2.b: ik normalization of KJ into its —t-Popov form P
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i : i Yoivene, G YEA
Spin-off: new transformations Xlim % ¥ =2

Weak Popov to Popov

Input: t € ZT, a nonnegative shift,
K € K[x]™*™ a matrix in —t-weak Popov form
Output: the —t-Popov form of K

Requirement: t > § := pivotDegree(K)
Complexity: ~ O(m“M’(2)),whereD =}t

Improvement and generalization of [Sarkar-Storjohann 2011, Section 4]
~» support nonzero shifts and involve average degree %

¢ problem viewed as a change of shift with a priori known output degrees
e introduction of partial linearization techniques for kernel bases
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Spin-off: new transformations Xlim ¥

Weak Popov to Popov

Input: t € ZT, a nonnegative shift,
K € K[x]™*™ a matrix in —t-weak Popov form
Output: the —t-Popov form of K

Requirement: t > § := pivotDegree(K)
Complexity: ~ O(m“M’(2)),whereD =}t

Improvement and generalization of [Sarkar-Storjohann 2011, Section 4]
~» support nonzero shifts and involve average degree %

¢ problem viewed as a change of shift with a priori known output degrees
e introduction of partial linearization techniques for kernel bases

Reduced to weak Popov

Input: s € Z™ a shift
A € K[x]™*™ a matrix in s-reduced form
Output: an s-weak Popov form of A

Complexity: O(m‘”‘ln(% + 1)), where D = ) rdeg,(A) — mmin(s)
Easy extension of [Sarkar-Storjohann 2011, Section 3] to shifted forms
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P i Yoiversne, S
Summary and perspectives Xtim ¥ ‘

Summary
® CharPoly = O(MatMul)
e Determinant of reduced polynomial matrices in O(m“’l\/l’(%))

¢ Fast transformations between shifted forms of polynomial matrices

D __ degdet __
m = —m — average row degree
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Summary
® CharPoly = O(MatMul)
e Determinant of reduced polynomial matrices in O(mwl\/l’(%))

¢ Fast transformations between shifted forms of polynomial matrices

D __ degdet __
m = —m — average row degree

Perspectives
® [mplementation and practical efficiency (small fields, degenerate instances, . ..)

¢ Approach without fast polynomial arithmetic
— Exploit the quasiseparable struct. of linearized polynomial matrices

e Frobenius normal form & Smith normal form
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