Deterministic computation of the characteristic polynomial in the time of matrix multiplication

Vincent Neiger

U. Limoges, France

Clément Pernet
Univ Grenoble Alpes, France

Inria LFANT seminar
Bordeaux, France (online), March 16, 2021

us

Outline

- Context, problem, state of the art
- Overview of the approach and complexity
- Obstacles and related spin-off results
- Context, problem, state of the art
- Overview of the approach and complexity
- Obstacles and related spin-off results
- field \mathbb{K}, algebraic complexity (counting operations in \mathbb{K})
- ω : exponent of MatMul over $\mathbb{K}: m \times m$ by $m \times m$ in $O\left(m^{\omega}\right)$

Reductions of most problems to matrix multiplication

- field \mathbb{K}, algebraic complexity (counting operations in \mathbb{K})
- ω : exponent of MatMul over $\mathbb{K}: m \times m$ by $m \times m$ in $O\left(m^{\omega}\right)$

Reductions of most problems to matrix multiplication

- field \mathbb{K}, algebraic complexity (counting operations in \mathbb{K})
- ω : exponent of MatMul over \mathbb{K} : $\mathfrak{m} \times m$ by $m \times m$ in $O\left(m^{\omega}\right)$

Reductions of most problems to matrix multiplication

- field \mathbb{K}, algebraic complexity (counting operations in \mathbb{K})
- ω : exponent of MatMul over \mathbb{K} : $\mathfrak{m} \times m$ by $m \times m$ in $O\left(m^{\omega}\right)$

Reductions of most problems to matrix multiplication

$$
\begin{gathered}
\left.\begin{array}{c}
\text { LinSys } \\
\text { Det } \\
\text { Rank } \\
\text { PLUQ } \\
\text { TRSM } \\
\text { Inverse }
\end{array}\right\}=\mathrm{O}(\text { MatMul }) \\
\text { MatMul }=\mathrm{O}\left(\begin{array}{c}
\text { Det, } \\
\text { PLUQ, } \\
\text { CharPoly, } \\
\text { Inverse }
\end{array}\right) \\
\text { CharPoly }=\mathrm{O}(\text { MatMul }) ?
\end{gathered}
$$

Characteristic polynomial...

$$
\text { given } \mathbf{M} \in \mathbb{K}^{\mathfrak{m} \times \mathrm{m}} \text {, compute } \operatorname{det}\left(x \mathbf{I}_{\mathfrak{m}}-\mathbf{M}\right) \in \mathbb{K}[\mathrm{x}]
$$

- deterministic, general: $\mathrm{O}\left(\mathrm{m}^{\omega} \log (\mathfrak{m})\right)$
[Keller-Gehrig 1985]
- deterministic, generic input: $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$
[Giorgi-Jeannerod-Villard 2003]
- randomized, general: $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$
[P.-Storjohann 2007]
... in the time of matrix multiplication
Deterministic charpoly algorithm in $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$
using any MatMul algorithm in $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ with $2<\omega \leqslant 3$
(i.e. not relying on a $\overline{\mathrm{O}}\left(\mathrm{m}^{\omega-\varepsilon}\right)$ MatMul algorithm...)
arXiv: 2010.04662 / HAL: hal-02963147

16.6* The Characteristic Polynomial

In Sect. 16.4 we saw that computing the determinant is about as hard as matrix multiplication. In this section we shall see that even the problem of computing all coefficients of the characteristic polynomial of a matrix has the same exponent as matrix multiplication.

Problem already solved?

16.6* The Characteristic Polynomial

In Sect. 16.4 we saw that computing the determinant is about as hard as matrix multiplication. In this section we shall see that even the problem of computing all coefficients of the characteristic polynomial of a matrix has the same exponent as matrix multiplication.

- Definition of ω : infimum? feasible?
- Which MatMul algorithm(s) can be used in the CharPoly algorithm?

For any ω feasible (as of today), there is a MatMul algorithm in $\mathrm{O}\left(\mathrm{m}^{\omega-\varepsilon}\right)$ for some $\varepsilon>0$
\Rightarrow Keller-Gehrig's CharPoly algorithm is in $\mathrm{O}\left(\mathrm{m}^{\omega-\varepsilon} \log (\mathfrak{m})\right) \subset \mathrm{O}\left(\mathrm{m}^{\omega}\right)$

Framework for complexity

Typical introduction of ω in computer algebra:
"Let ω be such that $m \times m$ MatMul costs $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ field operations"

Matrix multiplication over \mathbb{K}

- choose a MatMul algorithm with complexity $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$
- use this specific algorithm for all arising MatMul instances

Our requirement: $2<\omega \leqslant 3$ (we accept $\omega=2.1$, if you provide the MatMul algorithm)

Framework for complexity

Typical introduction of ω in computer algebra:
"Let ω be such that $m \times m$ MatMul costs $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ field operations"

Matrix multiplication over \mathbb{K}

- choose a MatMul algorithm with complexity $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$
- use this specific algorithm for all arising MatMul instances

Our requirement: $2<\omega \leqslant 3 \quad$ (we accept $\omega=2.1$, if you provide the MatMul algorithm)

Univariate polynomial multiplication over $\mathbb{K}[x]$

- choose a PolMul algorithm with complexity $\mathrm{O}(\mathrm{M}(\mathrm{d}))$
- use this specific algorithm for all arising PolMul instances

Requirement: $\mathrm{M}(\mathrm{d})$ is superlinear and submultiplicative and reasonably good
$2 M(d) \leqslant M(2 d) \quad M\left(d_{1} d_{2}\right) \leqslant M\left(d_{1}\right) M\left(d_{2}\right) \quad M(d) \in O\left(d^{\omega-1-\varepsilon}\right)$ for some $\varepsilon>0$

Requirement: $m \times m$ matrices over $\mathbb{K}[x]_{\leqslant d}$ multiplied in $O\left(m^{\omega} M(d)\right)$ field ops
All these requirements are satisfied by the classical MatMul/PolMul algorithms

Traces of Powers:

$$
\mathrm{O}\left(\mathrm{~m}^{4}\right) \text { or } \mathrm{O}\left(\mathrm{~m}^{\omega+1}\right)
$$

. [LeVerrier 1840] [Faddeev'49, Souriau'48, ...]
. used by [Csanky'75] to prove $\mathcal{N} C^{2}$ membership

Determinant expansion:

. [Samuelson'42, Berkowitz'84]
. suited to division free algorithms [Abdlejaoued-Malaschonok'01, Kaltofen-Villard'05]

Krylov methods:

- Deterministic
[Danilevskij'37, Keller-Gehrig'85, P.-Storjohann'07]
$\mathrm{O}\left(\mathrm{m}^{3}\right)$ or $\mathrm{O}\left(\mathrm{m}^{\omega} \log (\mathrm{m})\right)$
- Generic $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$
- Las-Vegas probabilistic for large fields ($|\mathbb{K}| \geqslant 2 \mathrm{~m}^{2}$) $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$

Determinant of a matrix $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$ of degree d

Evaluation-Interpolation: [folklore]

at \sim md points: requires large enough field

Diagonalization (Smith form): [Storjohann 2003]
Las Vegas randomized + additional logs for small fields

Partial triangularization:

- Iterative [Mulders-Storjohann 2003] via weak Popov form computations
- Divide and conquer, generic [Giorgi-Jeannerod-Villard 2003] diagonal of Hermite form must be $1, \ldots, 1, \operatorname{det}(\mathbf{A})$
- Divide and conquer [N.-Labahn-Zhou 2017] logarithmic factors in m and d

Sources of log factors

In \mathbb{K}-linear algebra

- divide and conquer with half-dimension blocks \rightarrow no $\log (m)$
- iterative approaches in m steps \rightarrow sometimes no $\log (m)$ [P.-Storjohann'07]
- explicit Krylov iteration: compute $\left(\begin{array}{llll}v & \mathbf{M} v & \cdots & \mathbf{M}^{m} v\end{array}\right) \rightarrow \log (m) \times$ MatMul

In $\mathbb{K}[x]$-linear algebra

- divide and conquer with half-dimension blocks \rightarrow no $\log (m)$ provided degrees are controlled, e.g. kernel basis [Zhou-Labahn-Storjohann'12]
- divide and conquer on degree $\rightarrow \log (d)$ but no $\log (m)$
e.g. $\mathbb{K}[x]-M a t M u l ~ a n d ~ a p p r o x i m a n t ~ b a s i s ~[G i o r g i-J e a n n e r o d-V i l l a r d ' 03] ~] ~$
- explicit Krylov iterations here as well [\star] because base cases of recursions on degree $=$ matrices over \mathbb{K} e.g. [Jeannerod-N.-Schost-Villard'17]
- looking for a matrix with unpredictable, unbalanced degrees up to $\sim \log (m)$ steps, each in dimension $m \times m$, to uncover the degree profile [Zhou-Labahn'13] reminiscent of long Krylov chains with small dimension drop \& failure to derandomize [P.-Storjohann'07]
[\star] typically contributes $\mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{d} \log (\mathrm{m})\right)$ to the cost \rightsquigarrow cannot be ignored for $\mathrm{d}=\mathrm{O}(1)$

Outline

- Context, problem, state of the art
- Overview of the approach and complexity
- Obstacles and related spin-off results
[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, N.-Labahn-Zhou 2017]
Triangularization of $m \times m$ matrix \mathbf{A} using $m / 2 \times m / 2$ blocks

Property: $\operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{R}) \operatorname{det}(\mathbf{B})$
[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, N.-Labahn-Zhou 2017]
Triangularization of $m \times m$ matrix \mathbf{A} using $m / 2 \times m / 2$ blocks

Property: $\operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{R}) \operatorname{det}(\mathbf{B})$

Overview of the approach and complexity

Generic case without log factor

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, N.-Labahn-Zhou 2017]
Triangularization of $\mathrm{m} \times \mathrm{m}$ matrix A using $\mathrm{m} / 2 \times \mathrm{m} / 2$ blocks
not computed

kernel basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$

$\mathbf{K}_{1} \mathbf{A}_{\mathbf{2}}+\mathbf{K}_{2} \mathbf{A}_{4}$
row basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$

Property: $\operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{R}) \operatorname{det}(\mathbf{B})$
Generic input $\Rightarrow \operatorname{det}(\mathbf{A})$ without $\log (\mathrm{m})$
\mathbf{A}_{1} and \mathbf{A}_{3} are coprime $\Rightarrow \mathbf{R}=\mathbf{I}_{\mathrm{m} / 2} \Rightarrow \operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{B})$

- Compute kernel $\left[\mathrm{K}_{1} \mathrm{~K}_{2}\right]$; deduce B by MatMul $O\left(m^{\omega} M^{\prime}(d)\right)$
- Recursively, compute $\operatorname{det}(\mathbf{B})$, return it
\mathbf{A} and $\left[\mathbf{K}_{1} \mathbf{K}_{2}\right.$] have degree $\mathrm{d} \Rightarrow \mathbf{B}$ has degree 2d: controlled total degree GCD in $\leqslant M^{\prime}(d) \in O(M(d) \log (d))$ f.ops.
total cost: $O\left(m^{\omega} M^{\prime}(d)+(m / 2)^{\omega} M^{\prime}(2 d)+\cdots+M^{\prime}(m d)\right) \subset O\left(m^{\omega} M^{\prime}(d)\right)$

Overview of the approach and complexity

General case with log factor

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, N.-Labahn-Zhou 2017]
Triangularization of $\mathfrak{m} \times m$ matrix A using $m / 2 \times m / 2$ blocks

Property: $\operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{R}) \operatorname{det}(\mathbf{B})$
Matrix degree not controlled: degree of \mathbf{B} up to $\mathrm{D}=\sum \operatorname{rdeg}(\mathbf{A}) \leqslant \mathrm{md}$ but controlled average row degree: at most $\frac{\mathrm{D}}{\mathrm{m}}$

General input $\Rightarrow \operatorname{det}(\mathbf{A})$ in $\tilde{O}\left(m^{\omega} \frac{D}{m}\right)$

- Compute kernel $\left[\mathrm{K}_{1} \mathrm{~K}_{2}\right]$; deduce B by MatMul
- Compute row basis \mathbf{R}
- Recursively, compute $\operatorname{det}(\mathbf{R})$ and $\operatorname{det}(\mathbf{B})$, return $\operatorname{det}(\mathbf{R}) \operatorname{det}(\mathbf{B})$

Overview of the approach and complexity

Be lazy: if hard to compute, don't compute
[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, N.-Labahn-Zhou 2017] Triangularization of $m \times m$ matrix \mathbf{A} using $m / 2 \times m / 2$ blocks
not computed

kernel basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$

$\mathrm{K}_{1} \mathrm{~A}_{2}+\mathrm{K}_{2} \mathrm{~A}_{4}$
row basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$

Property: $\operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{R}) \operatorname{det}(\mathbf{B})$

Obstacle: removing log factors in row basis computation \Rightarrow solution: remove row basis computation

$$
\left[\begin{array}{cc}
\mathbf{I}_{\mathfrak{m} / 2} & \mathbf{0} \\
\mathbf{K}_{1} & \mathbf{K}_{2}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{A}_{3} & \mathbf{A}_{4}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{0} & \mathbf{B}
\end{array}\right]
$$

Property: $\operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}_{1}\right) \operatorname{det}(\mathbf{B}) / \operatorname{det}\left(\mathbf{K}_{2}\right)$

$$
\begin{aligned}
& \qquad\left[\begin{array}{cc}
\mathbf{I}_{\mathfrak{m} / 2} & \mathbf{0} \\
\mathbf{K}_{1} & \mathbf{K}_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{A}_{3} & \mathbf{A}_{4}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{0} & \mathrm{~B}
\end{array}\right] \\
& \text { Property: } \operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}_{1}\right) \operatorname{det}(\mathbf{B}) / \operatorname{det}\left(\mathbf{K}_{2}\right)
\end{aligned}
$$

${ }^{1}$ no $\log (m)$ in the computation of $\mathbf{A}_{1}, \mathbf{B}, \mathbf{K}_{2}$
${ }_{9}$ r. requires nonsingular \mathbf{A}_{1}, otherwise $\operatorname{det}\left(\mathbf{K}_{2}\right)=0$
© 3 recursive calls in matrix size $m / 2$ is $\boldsymbol{\iota}$, but requires $\sum \operatorname{rdeg}\left(\mathbf{A}_{1}\right) \leqslant \mathrm{D} / 2$ otherwise degree control is too weak.
(this implies $\sum \operatorname{rdeg}\left(\mathbf{K}_{\mathbf{2}}\right) \leqslant \mathrm{D} / 2$)

$$
\begin{aligned}
& \qquad\left[\begin{array}{cc}
\mathbf{I}_{\mathfrak{m} / 2} & \mathbf{0} \\
\mathbf{K}_{1} & \mathbf{K}_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{A}_{3} & \mathbf{A}_{4}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{0} & \mathrm{~B}
\end{array}\right] \\
& \text { Property: } \operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}_{1}\right) \operatorname{det}(\mathbf{B}) / \operatorname{det}\left(\mathbf{K}_{2}\right)
\end{aligned}
$$

${ }^{1}$ no $\log (m)$ in the computation of $\mathbf{A}_{\mathbf{1}}, \mathbf{B}, \mathbf{K}_{2}$
4. requires nonsingular \mathbf{A}_{1}, otherwise $\operatorname{det}\left(\mathbf{K}_{2}\right)=0$

- 3 recursive calls in matrix size $m / 2$ is $\boldsymbol{\iota}$, but requires $\sum \operatorname{rdeg}\left(\mathbf{A}_{1}\right) \leqslant \mathrm{D} / 2$
otherwise degree control is too weak. (this implies $\left.\sum \operatorname{rdeg}\left(\mathbf{K}_{2}\right) \leqslant \mathrm{D} / 2\right)$

Solution: require A in weak Popov form

(the characteristic matrix $\mathbf{A}=x \mathbf{I}_{\mathfrak{m}}-\mathbf{M}$ is in Popov form)
${ }_{16}$ implies \mathbf{A}_{1} nonsingular and $\sum \operatorname{rdeg}\left(\mathbf{A}_{1}\right) \leqslant \mathrm{D} / 2$ up to easy transformations
16 both \mathbf{A}_{1} and \mathbf{B} are also in weak Popov form \Rightarrow suitable for recursive calls
${ }_{\boldsymbol{\varphi}} \mathbf{K}_{2}$ is in "shifted reduced" form... find weak Popov \mathbf{P} with same determinant

$$
\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2},\left\lfloor\frac{D}{2}\right\rfloor\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)
$$

where: $\mathrm{M}^{\prime}(\mathrm{d})=\mathrm{GCD}(\mathrm{d}) \in \mathrm{O}(\mathrm{M}(\mathrm{d}) \log (\mathrm{d}))$

$$
\frac{D}{m}=\frac{\text { degdet }}{m}=\text { avg row degree }
$$

$\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2},\left\lfloor\frac{D}{2}\right\rfloor\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)$
where: $\mathrm{M}^{\prime}(\mathrm{d})=\mathrm{GCD}(\mathrm{d}) \in \mathrm{O}(\mathrm{M}(\mathrm{d}) \log (\mathrm{d}))$
$\frac{\mathrm{D}}{\mathrm{m}}=\frac{\text { degdet }}{\mathrm{m}}=$ avg row degree

$\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2},\left\lfloor\frac{D}{2}\right\rfloor\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)$
where: $\mathrm{M}^{\prime}(\mathrm{d})=\mathrm{GCD}(\mathrm{d}) \in \mathrm{O}(\mathrm{M}(\mathrm{d}) \log (\mathrm{d}))$
$\frac{\mathrm{D}}{\mathrm{m}}=\frac{\text { degdet }}{\mathrm{m}}=$ avg row degree

$\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2},\left\lfloor\frac{D}{2}\right\rfloor\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)$
where: $\mathrm{M}^{\prime}(\mathrm{d})=\mathrm{GCD}(\mathrm{d}) \in \mathrm{O}(\mathrm{M}(\mathrm{d}) \log (\mathrm{d}))$

$\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2},\left\lfloor\frac{D}{2}\right\rfloor\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)$
where: $\mathrm{M}^{\prime}(\mathrm{d})=\mathrm{GCD}(\mathrm{d}) \in \mathrm{O}(\mathrm{M}(\mathrm{d}) \log (\mathrm{d}))$

$\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2},\left\lfloor\frac{D}{2}\right\rfloor\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)$
where: $\mathrm{M}^{\prime}(\mathrm{d})=\mathrm{GCD}(\mathrm{d}) \in \mathrm{O}(\mathrm{M}(\mathrm{d}) \log (\mathrm{d}))$

$\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2},\left\lfloor\frac{D}{2}\right\rfloor\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right) \leqslant O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)$
where: $\mathrm{M}^{\prime}(\mathrm{d})=\mathrm{GCD}(\mathrm{d}) \in \mathrm{O}(\mathrm{M}(\mathrm{d}) \log (\mathrm{d}))$

- Context, problem, state of the art
- Overview of the approach and complexity
- Obstacles and related spin-off results
$\mathbf{A} \in \mathbb{K}[x]^{m \times m}$ nonsingular
elementary row transformations

Hermite form

. triangular
. column normalized
$\left[\begin{array}{llll}\mathbf{1 6} & & & \\ 15 & \mathbf{0} & & \\ 15 & & \mathbf{0} & \\ 15 & & & \mathbf{0}\end{array}\right] \quad\left[\begin{array}{llll}4 & & & \\ 3 & \mathbf{7} & & \\ 1 & 5 & \mathbf{3} & \\ 3 & 6 & 1 & \mathbf{2}\end{array}\right]$
$\mathbf{A} \in \mathbb{K}[x]^{\mathfrak{m} \times m}$ nonsingular
elementary row transformations

Popov form

. row reduced / distinct pivots
. column normalized
$\left[\begin{array}{llll}\mathbf{1 6} & & & \\ 15 & \mathbf{0} & & \\ 15 & & \mathbf{0} & \\ 15 & & & \mathbf{0}\end{array}\right] \quad\left[\begin{array}{llll}4 & & & \\ 3 & \mathbf{7} & & \\ 1 & 5 & \mathbf{3} & \\ 3 & 6 & 1 & \mathbf{2}\end{array}\right] \quad\left[\begin{array}{llll}4 & 3 & 3 & 3 \\ 3 & 4 & 3 & 3 \\ 3 & 3 & 4 & 3 \\ 3 & 3 & 3 & 4\end{array}\right] \quad\left[\begin{array}{llll}\mathbf{7} & 0 & 1 & 5 \\ 0 & 1 & & 0 \\ 6 & 0 & 1 & \mathbf{6}\end{array}\right]$

Invariant: $D=\operatorname{deg}(\operatorname{det}(\mathbf{A}))=4+7+3+2=7+1+2+6$

Hermite and Popov forms

$\mathbf{A} \in \mathbb{K}[x]^{\mathfrak{m} \times m}$ nonsingular
elementary row transformations

Popov form

. row reduced / distinct pivots
. column normalized
$\left[\begin{array}{llll}4 & 3 & 3 & 3 \\ 3 & 4 & 3 & 3 \\ 3 & 3 & 4 & 3 \\ 3 & 3 & 3 & 4\end{array}\right] \quad\left[\begin{array}{llll}\mathbf{7} & 0 & 1 & 5 \\ 0 & \mathbf{1} & & 0 \\ 6 & 0 & 1 & \mathbf{6}\end{array}\right]$
position over term reduced Gröbner basis ${ }^{\text {term over pgsition }}$
$\mathbb{K}[x]$-module $\mathcal{M} \subset \mathbb{K}[x]^{1 \times m}$ of rank m
Invariant: $D=\operatorname{deg}(\operatorname{det}(\mathbf{A}))=4+7+3+2=7+1+2+6=\operatorname{dim}_{\mathbb{K}}\left(\mathbb{K}[x]^{1 \times m} / \mathcal{N}\right)$

Hermite and Popov forms

$\mathbf{A} \in \mathbb{K}[x]^{m \times m}$ nonsingular
elementary row transformations

Popov form

. row reduced / distinct pivots
. column normalized
$\left[\begin{array}{llll}4 & 3 & 3 & 3 \\ 3 & 4 & 3 & 3 \\ 3 & 3 & 4 & 3 \\ 3 & 3 & 3 & 4\end{array}\right] \quad\left[\begin{array}{llll}\mathbf{7} & 0 & 1 & 5 \\ 0 & \mathbf{1} & & 0 \\ 6 & 0 & 1 & \mathbf{6}\end{array}\right]$
position over term reduced Gröbner basis ${ }^{\text {term over pgsition }}$
$\mathbb{K}[x]$-module $\mathcal{M} \subset \mathbb{K}[x]^{1 \times m}$ of rank m
Invariant: $D=\operatorname{deg}(\operatorname{det}(\mathbf{A}))=4+7+3+2=7+1+2+6=\operatorname{dim}_{\mathbb{K}}\left(\mathbb{K}[x]^{1 \times m} / \mathcal{M}\right)$

Weak Popov form

not column normalized

Shift: integer tuple $\boldsymbol{s}=\left(s_{1}, \ldots, s_{m}\right)$ acting as column weights \rightsquigarrow connects Popov and Hermite forms:

$\mathbf{s}=$$(0,0,0,0)$ Popov
$\left.\mathbf{s}=\begin{array}{llll}\mathbf{4} & 3 & 3 & 3 \\ 3 & \mathbf{4} & 3 & 3 \\ 3 & 3 & \mathbf{4} & 3 \\ 3 & 3 & 3 & 4\end{array}\right]$

0 \& \mathbf{1} \& \& 0

\mathbf{s} -Popov

6 \& 0 \& \mathbf{2} \& \mathbf{6}\end{array}\right]\).

- shifts arise naturally in algorithms (approximants, kernel, ...)
- they allow one to specify non-uniform degree constraints

Back to our obstacles: easy ones

Recall: $\mathbf{A}=\left[\begin{array}{ll}\mathbf{A}_{1} & \mathbf{A}_{2} \\ \mathbf{A}_{3} & \mathbf{A}_{4}\end{array}\right]$ in weak Popov form, we want:

- \mathbf{A}_{1} nonsingular: ok by definition
(all principal submatrices of \mathbf{A} are weak Popov \Rightarrow are nonsingular)
- $\sum \operatorname{rdeg}\left(\mathbf{A}_{1}\right) \leqslant \mathrm{D} / 2$: either ok for \mathbf{A}, or ok for $\left[\begin{array}{ll}\mathbf{A}_{4} & \mathbf{A}_{3} \\ \mathbf{A}_{\mathbf{2}} & \mathbf{A}_{\mathbf{1}}\end{array}\right]$
(almost weak Popov. . . easily transformed into it, with same determinant)

Back to our obstacles: easy ones

Recall: $\mathbf{A}=\left[\begin{array}{lll}\mathbf{A}_{1} & \mathbf{A}_{2} \\ \mathbf{A}_{3} & \mathbf{A}_{4}\end{array}\right]$ in weak Popov form, we want:

- \mathbf{A}_{1} nonsingular: ok by definition
(all principal submatrices of \mathbf{A} are weak Popov \Rightarrow are nonsingular)
- $\sum \operatorname{rdeg}\left(\mathbf{A}_{1}\right) \leqslant \mathrm{D} / 2$: either ok for \mathbf{A}, or ok for $\left[\begin{array}{cc}\mathbf{A}_{4} & \mathbf{A}_{3} \\ \mathbf{A}_{2} & \mathbf{A}_{1}\end{array}\right]$ (almost weak Popov. . . easily transformed into it, with same determinant)

Shifts in kernel basis computation

$\left[\begin{array}{lll}\mathbf{K}_{1} & \mathbf{K}_{2}\end{array}\right]$ kernel basis of $\left[\begin{array}{c}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$ computed in $\mathrm{rdeg}(\mathbf{A})$-weak Popov form: cost $O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right), \quad \sum r \operatorname{deg}\left(K_{2}\right) \leqslant D / 2, \quad$ and \mathbf{K}_{2} in s-weak Popov form
$\mathrm{D}=\sum \mathrm{rdeg}(\mathbf{A})=\operatorname{deg} \operatorname{det}(\mathbf{A})$
$\mathbf{s}=\operatorname{rdeg}\left(\mathbf{A}_{4}\right)=$ last $\mathrm{m} / 2$ entries of $\operatorname{rdeg}(\mathbf{A})$

Using the shift rdeg(A) (and s) has many crucial advantages:

- towards correctness: product $\mathbf{B}=\left[\begin{array}{ll}\mathbf{K}_{1} & \mathbf{K}_{2}\end{array}\right]\left[\begin{array}{ll}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$ is in 0 -weak Popov form
- towards efficiency: implies small degrees in \mathbf{K}_{2} and best speed both for kernel and product B

Back to our obstacles: easy ones

Recall: $\mathbf{A}=\left[\begin{array}{ll}\mathbf{A}_{1} & \mathbf{A}_{2} \\ \mathbf{A}_{3} & \mathbf{A}_{4}\end{array}\right]$ in weak Popov form, we want:

- \mathbf{A}_{1} nonsingular: ok by definition (all principal submatrices of \mathbf{A} are weak Popov \Rightarrow are nonsingular)
- $\sum \operatorname{rdeg}\left(\mathbf{A}_{1}\right) \leqslant D / 2$: either ok for \mathbf{A}, or ok for $\left[\begin{array}{cc}\mathbf{A}_{4} & \mathbf{A}_{3} \\ \mathbf{A}_{2} & \mathbf{A}_{1}\end{array}\right]$ (almost weak Popov. . . easily transformed into it, with same determinant)

Shifts in kernel basis computation

$\left[\begin{array}{ll}\mathbf{K}_{1} & \mathbf{K}_{2}\end{array}\right]$ kernel basis of $\left[\begin{array}{c}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$ computed in $\mathrm{rdeg}(\mathbf{A})$-weak Popov form: cost $O\left(\mathrm{~m}^{\omega} \mathrm{M}^{\prime}\left(\frac{\mathrm{D}}{\mathrm{m}}\right)\right), \quad \sum \mathrm{rdeg}\left(\mathbf{K}_{2}\right) \leqslant \mathrm{D} / 2, \quad$ and \mathbf{K}_{2} in s-weak Popov form
$\mathrm{D}=\sum \mathrm{rdeg}(\mathbf{A})=\operatorname{deg} \operatorname{det}(\mathbf{A})$
$\mathbf{s}=\operatorname{rdeg}\left(\mathbf{A}_{4}\right)=$ last $\mathrm{m} / 2$ entries of $\operatorname{rdeg}(\mathbf{A})$

Using the shift rdeg(A) (and s) has many crucial advantages:

- towards correctness: product $\mathbf{B}=\left[\begin{array}{ll}\mathbf{K}_{1} & \mathbf{K}_{2}\end{array}\right]\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$ is in 0 -weak Popov form
- towards efficiency: implies small degrees in \mathbf{K}_{2} and best speed both for kernel and product B
... but we cannot call the algorithm recursively on K_{2}

Approaching the main obstacle

Given \mathbf{K}_{2} in s-weak Popov form, with $s \geqslant 0$ Find \mathbf{P} in 0 -weak Popov form with the same determinant

Idea 1.a: change of shift from \boldsymbol{s} to $\mathbf{0}$, i.e. $\mathbf{P}=$ WeakPopov $\left(\mathbf{K}_{2}\right)$
\oplus known methods are only efficient for increasing s to a larger shift
[Jeannerod-N.-Schost-Villard'17]
Idea 1.b: normalization of \mathbf{K}_{2} into its s-Popov form \mathbf{P}
$\rightsquigarrow \mathbf{P}^{\boldsymbol{\top}}$ is weak Popov by construction, and $\operatorname{det}\left(\mathbf{P}^{\mathbf{T}}\right)=\operatorname{det}(\mathbf{P})$
-r amounts to a change of shift from s to $-\delta \leqslant 0[N .16] \Rightarrow$ same issue

Approaching the main obstacle

Given \mathbf{K}_{2} in s-weak Popov form, with $s \geqslant 0$ Find \mathbf{P} in 0-weak Popov form with the same determinant

Idea 1.a: change of shift from \mathbf{s} to $\mathbf{0}$, i.e. $\mathbf{P}=$ WeakPopov $\left(\mathbf{K}_{2}\right)$
\oplus known methods are only efficient for increasing sto a larger shift
[Jeannerod-N.-Schost-Villard'17]
Idea 1.b: normalization of \mathbf{K}_{2} into its s-Popov form \mathbf{P}
$\rightsquigarrow \mathbf{P}^{\boldsymbol{\top}}$ is weak Popov by construction, and $\operatorname{det}\left(\mathbf{P}^{\boldsymbol{T}}\right)=\operatorname{det}(\mathbf{P})$
$\boldsymbol{\varphi}$ amounts to a change of shift from s to $-\delta \leqslant 0[N .16] \Rightarrow$ same issue
Fact: $\quad \mathbf{K}_{2}^{\top}$ is $-\mathbf{t}$-weak Popov $\quad \mathbf{t}=\operatorname{rdeg}_{\mathbf{s}}\left(\mathbf{K}_{\mathbf{2}}\right)=\mathbf{s}+\boldsymbol{\delta} \geqslant 0$
(for simplicity some row and column permutations are ignored)
Idea 2.a: change of shift from $-\mathbf{t}$ to $\mathbf{0}$, i.e. $\mathbf{P}=\operatorname{WeakPopov}\left(\mathbf{K}_{2}^{\top}\right)$
$\boldsymbol{\varphi}$ increasing shift, but \mathbf{K}_{2}^{\top} has large average rdeg (we control $\operatorname{cdeg}\left(\mathbf{K}_{2}^{\top}\right)=\operatorname{rdeg}\left(\mathbf{K}_{2}\right)$)

Approaching the main obstacle

Given \mathbf{K}_{2} in s-weak Popov form, with $s \geqslant 0$ Find \mathbf{P} in 0 -weak Popov form with the same determinant

Idea 1.a: change of shift from \boldsymbol{s} to $\mathbf{0}$, i.e. $\mathbf{P}=$ WeakPopov $\left(\mathbf{K}_{2}\right)$
\oplus known methods are only efficient for increasing s to a larger shift
[Jeannerod-N.-Schost-Villard'17]
Idea 1.b: normalization of \mathbf{K}_{2} into its s-Popov form \mathbf{P}
$\rightsquigarrow \mathbf{P}^{\boldsymbol{\top}}$ is weak Popov by construction, and $\operatorname{det}\left(\mathbf{P}^{\mathbf{T}}\right)=\operatorname{det}(\mathbf{P})$
$\boldsymbol{\varphi}$ amounts to a change of shift from s to $-\delta \leqslant 0[N .16] \Rightarrow$ same issue
Fact: $\quad \mathbf{K}_{2}^{\top}$ is $-\mathbf{t}$-weak Popov $\quad \mathbf{t}=\operatorname{rdeg}_{\mathbf{s}}\left(\mathbf{K}_{\mathbf{2}}\right)=\mathbf{s}+\boldsymbol{\delta} \geqslant 0$
(for simplicity some row and column permutations are ignored)
Idea 2.a: change of shift from $-\mathbf{t}$ to $\mathbf{0}$, i.e. $\mathbf{P}=\operatorname{WeakPopov}\left(\mathbf{K}_{2}^{\top}\right)$
$\boldsymbol{\oplus} \boldsymbol{i}$ increasing shift, but \mathbf{K}_{2}^{\top} has large average rdeg (we control $\operatorname{cdeg}\left(\mathbf{K}_{2}^{\top}\right)=\operatorname{rdeg}\left(\mathbf{K}_{2}\right)$)

Idea 2.b: normalization of \mathbf{K}_{2}^{\top} into its -t-Popov form \mathbf{P}

Spin-off: new transformations

Weak Popov to Popov	
Input:	$\mathbf{t} \in \mathbb{Z}_{\geq 0}^{m}$ a nonnegative shift,
	$\mathbf{K} \in \mathbb{K}[x]^{m \times m}$ a matrix in $-\mathbf{t}$-weak Popov form
Output:	the $-\mathbf{t}$-Popov form of \mathbf{K}
Requirement:	$\mathbf{t} \geqslant \delta:=$ pivotDegree (\mathbf{K})
Complexity:	$\mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{M}^{\prime}\left(\frac{\mathrm{D}}{\mathrm{m}}\right)\right)$, where $\mathrm{D}=\Sigma \mathrm{t}$

Improvement and generalization of [Sarkar-Storjohann 2011, Section 4]
\rightsquigarrow support nonzero shifts and involve average degree $\frac{D}{m}$

- problem viewed as a change of shift with a priori known output degrees
- introduction of partial linearization techniques for kernel bases

Spin-off: new transformations

Weak Popov to Popov
Input: $\quad \mathbf{t} \in \mathbb{Z}_{\geqslant 0}^{m}$ a nonnegative shift,
$\mathbf{K} \in \mathbb{K}[x]^{\mathrm{m} \times m}$ a matrix in -t-weak Popov form
Output: \quad the -t-Popov form of \mathbf{K}
Requirement: $\quad \mathbf{t} \geqslant \boldsymbol{\delta}:=\operatorname{pivot}$ Degree (\mathbf{K})
Complexity: $\quad \mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{M}^{\prime}\left(\frac{\mathrm{D}}{\mathrm{m}}\right)\right)$, where $\mathrm{D}=\sum \mathrm{t}$
Improvement and generalization of [Sarkar-Storjohann 2011, Section 4]
\rightsquigarrow support nonzero shifts and involve average degree $\frac{\mathrm{D}}{\mathrm{m}}$

- problem viewed as a change of shift with a priori known output degrees
- introduction of partial linearization techniques for kernel bases

Reduced to weak Popov

Input:
$\mathbf{s} \in \mathbb{Z}^{n}$ a shift
$\mathbf{A} \in \mathbb{K}[x]^{m \times n}$ a matrix in s-reduced form
Output: an s-weak Popov form of \mathbf{A}
Complexity: $\quad \mathrm{O}\left(\mathrm{m}^{\omega-1} \mathrm{n}\left(\frac{\mathrm{D}}{\mathrm{m}}+1\right)\right)$, where $\mathrm{D}=\sum \operatorname{rdeg}_{\mathrm{s}}(\mathbf{A})-\mathrm{m} \min (\mathbf{s})$
Easy extension of [Sarkar-Storjohann 2011, Section 3] to shifted forms

Summary and perspectives

Summary

- CharPoly $=\mathrm{O}$ (MatMul)
- Determinant of reduced polynomial matrices in $O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)$
- Fast transformations between shifted forms of polynomial matrices

$$
\frac{\mathrm{D}}{\mathrm{~m}}=\frac{\text { degdet }}{\mathrm{m}}=\text { average row degree }
$$

Summary and perspectives

Summary

- CharPoly $=\mathrm{O}$ (MatMul)
- Determinant of reduced polynomial matrices in $O\left(m^{\omega} M^{\prime}\left(\frac{D}{m}\right)\right)$
- Fast transformations between shifted forms of polynomial matrices

$$
\frac{\mathrm{D}}{\mathrm{~m}}=\frac{\text { degdet }}{\mathrm{m}}=\text { average row degree }
$$

Perspectives

- Implementation and practical efficiency (small fields, degenerate instances, ...)
- Approach without fast polynomial arithmetic \rightarrow Exploit the quasiseparable struct. of linearized polynomial matrices
- Frobenius normal form \& Smith normal form

