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The Hasse-Weil L-function

o Let F' be a number field.
o Let E/r be an elliptic curve of conductor 91 = 9.

o Let K/F be a quadratic extension of F'.
» Assume for simplicity that 91 is square-free, coprime to disc(K/F).

o For each prime p of K, ap(E) = 1 + |p| — #E(F,).
Hasse-Weil L-function of the base change of E to K (R(s) > 0)

L(E/K,s) = [T (1 —aplpl™) ™" x TT (1 — aplpl™ + o) .
p|N pt

o Modularity conjecture —

» Analytic continuation of L(E/K, s) to C.
» Functional equation relating s < 2 — s.
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The BSD conjecture and Heegner points

Brian Birch Sir P Swinnerton-Dyer Kurt Heegner
Coarse version of BSD conjecture

ords—1 L(E/K, s) = tky E(K).

Heegner Points
@ Only for F totally real and K /F totally complex (CM extension).
o Simplest setting: F' = Q (and K/Q imaginary quadratic), and
0| N = ¢splitin K.
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Heegner Points (K /Q imaginary quadratic)
0 To(M) = {(2%) € SLa(Z): M | c}.
o Attach to £ a modular form:
fe(z) = ] ane®™"* € Sy(To(MN)).
n=1

T

o Givente K nH, setJ, = J 2mifp(z)dz € C.

o0

o Well-defined up to the lattice
Mg = {1, 2mifu(z)dz | 7 e Hy (To VK, Z) }.

» There exists an isogeny n: C/Ag — E(C).
» Set P, =n(J;) € E(C).

o Fact: P, € E(H,), where H./K is a class field attached to .

Theorem (Gross—Zagier)

Py = Try_ /i (P;) nontorsion < L'(E/K,1) # 0.
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Darmon points — history

©

n = #{v | cop: v splits in K}.
o S(E,K) = {v | Moop : v not split in K}

o Sign of functional equation for L(E/K, s) should be (—1)#5(F.K),
o Assume that s = #S(F, K) is odd.
Fix a finite place p € S(E, K).

» There is also an archimedean version. . .
Darmon (°99): First construction, with FF = Q and s = 1.
Trifkovic ('06): F' imaginary quadratic, still s = 1.
Greenberg ('08): F totally real, arbitrary ramification, and s > 1.

Guitart-M.—Sengun ('14): F of arbitrary signature, arbitrary
ramification, and s > 1.

o Guitart-M.—Molina (’18): Adelic generalization, removing all
restrictions.

©

© © 0 o
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Review of Darmon points
o Define a quaternion algebra B, and a group I' = SLa(Fy).
» The group T" acts (non-discretely) on H,,.

o Attach to £ a cohomology class

®p e H" (T, Meas’ (P (F}, Z))) - |

o Attach to each embedding ¢: K — B a homology class

Oy € H, (T, DivP H,,) . J

» Well defined up to the image of H,, 1 (I", Z) > H,, (T, Div® ).
» Here ¢ is a connecting homomorphism arising from

OHDiVOHp — DivH, &ZHO

o Cap-product and integration on the coefficients yield an element:

J1/1 =<<I>E,@¢>€pr. J

o Jy well-defined up to a multiplicative lattice L = (®g,d(H,,+1(I', Z))).
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Conjectures on Darmon points
JTZ) = <(I)E, @¢> € KPX/L.

Conjecture 1
There is an isogeny nrate : K, /L — E(K,).
@ Proven for totally-real fields (Greenberg, Rotger—Longo-Vigni,
Spiess, Gehrmann—Rosso).
The Darmon point attached to £ and ¢: K — B is:

Py = nate(Jy) € E(Kp).
Conjecture 2
@ The local point P, is global, and belongs to E(K2°).
@ P, is nontorsion if and only if L'(E/K, 1) # 0.

o Predicts also the exact number field over which P, is defined.
@ Includes a Shimura reciprocity law like that of Heegner points.
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The {p}-arithmetic group I’

© B,p = quaternion algebra with Ram(B) = S(E, K) \ {p}.
o Induces a factorization 91 = pOm.
o Set RP(pm) = RF(m) = B, Eichler orders of levels pm and m.
o Define T'F(pm) = RF(pm); and TF(m) = RE (m)].
o Set
I'= (REm)p ), -
o Fix an embedding ¢,: R¥(m) — Ma(Zy).

Lemma
tp induces bijections

L/T8(m) = vy, T/TE(pm) =&

Vo (resp. &) are the even vertices (resp. edges) of the BT tree.

Marc Masdeu Plectic Stark—Heegner points

7/22




Integration on H,
o Let u e Meas?(PL(F}),Z).
o Coleman integration on H,, = P!(C,) \ P1(F}) can be defined as:

— T
wy = lo ) = lim log(U )uU.
Jio= Lt (0 v =t 3 s, (5=

o ForI' ¢ PGLy(F}), induce a pairing

HY(T, Meas®(PL(F,), Z)) x H;(T', Div® H,,) @»Cp :

o Bruhat-Tits tree of GLa(F}), |p| = 2.

@ H, having the Bruhat-Tits as retract.

o Can identify Meas®(P'(F}),Z) ~ HC(Z)
={c:E(Ty) = Z| Xo(e)=v cle) = 0}

o ty is any pointin U < PY(F,).
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Plectic conjectures

E = § I o :' ;
o o W e o
MG Mey— T @ri\"l‘gb

‘/) 27
Jan Nekovar Tony Scholl
‘ ‘ L)(E/K, 1) should be related to
CM-points on a r-dimensional
quaternionic Shimura variety. , ,

Goal : Construct Q € A"(E(K)) such that
Q non-torsion < L) (E/K,1) # 0.
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p-adic Plectic invariants

o Letr > 1 with same parity as #S(F, K).
© S=A{p1,....pr} S S(E,K), [pi| =p.
o Let B/p with Ram(B) = S(E, K) \ S.

o Setl'g = (R(’)B(m)[S_l])lx-

Michele Fornea
Fs = HpeS Fy, PI(FS) = HpeSPl(FP)’ and Hg = HpeS Hy.
o Construct @z € H"(T's, Meas®(P!(Fs), Z)).
» w(PY(Fy) x Uge) =0, forallpe S, all Use < P! (Fs»).
o Construct ©y € H,(I's, Zo(Hs)).
o Pairing Meas’(P!(Fs), Z) x Div’(Hs) = @,es Kp-

- H'(T's, Meas’ (P (Fs), Z)) x Hy (s, Zo(Hs)) Y ®,es K-

Plectic invariant attached to £, K and S
J = <<I>E, @¢> € ®peS Kp.

Marc Masdeu Plectic Stark—Heegner points 10/22



Cohomology class

o Consider pr € H"(I'#(psm), Z) attached to E.
» Via Eichler—Shimura and Jacquet-Langlands.

o Shapiro isomorphism ~» ¢ € H*(I'g, coIndE(%(psm) 7).
o coIndll:g( )Z ~ Maps(E(Ts), Z).
0 HCg(Z) = {c: £(Ts) — Z “harmonic in each variable”}:

0 - HCg(Z) — Maps(& 5 @ Maps(V(Ty) x E(Tge), Z) — -+ -
pes
o Meas(P'(Fys), Z) identified with HCg(Z).

©

Since ¢p is p-new, have an isomorphism

H"(Tg, HCs(Z)) 5 ~ H*(I's, Maps(£(T3), Z)) .

(]

Therefore we can define @, unique up to sign.
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Homology class

o Lety: O — REF(m) be an embedding of an order O of K.
» Which is optimal: (O) = RF (m) n ¢(K).

Consider the group O; = {u e O*: Nmg p(u) = 1}.
» rank(O;) = rank(O*) — rank(Oy) = n.

Choose a basis ui, ..., u, € O for the non-torsion units.

Ay = p(ur) A A p(uy) € Hy(T, Z).

o

(]

S

©

K acts on Hg through K & B TES™ SLy(Fy).
Let 7,, 7, be the fixed points of K| acting on 7.

» SetD = Qpes(mp — 7p) € Zo(Hs)-
Define © = [Ay, ® D] € H,,(T's, Zo(Hs)).

Ideally, we'd like to define a class attached to (X) 7.
pesS

©

©
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Conjectures

o Granting BSD + parity conjectures, expect ry4(£/K) = r (mod 2).

o Fix embeddings ¢,: K — K,. Get a regulator map

det: A" E(K) — E(Ks), Q1A A Q> det(t,(Q))).

Conjecture 1 (algebraicity)

Suppose that r744(E/K) > r. Then:
0 Jw e ATE(K) such that nae(J) = det(w).
O Nate(J) # 0 = rag(E/K) = 1.
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Conjectures (II)

o Write T'(E) = {pe S| ay(F) =1}
o Set p(E,S) =rag(E/F) + |T(E)|.
@ Bergunde—Gehrmann construct a p-adic L-function attached to
(E,K,S).
» Interpolates central L-values of twists of by characters ramified at S.
» Vanishes to order at least r(E, K, S) = max{p(E, S), p(EX, S)}.

o Fornea-Gehrmann show that L% = .

@ Assume that F' = Q(j(E)).

Conjecture 2 (non-vanishing)

o If rag(E/K) = r = max{p(E, S), p(E®, S)}, then J # 0.
0 If raq(E/K) < r, then J # 0 (but don’t know arithmetic meaning).
Provided that the order of vanishing of L,, allows for it.
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Numerical evidence

Joint work with Xevi Guitart and Michele Fornea.
o We have restricted to F' real quadratic of narrow class number one.
» Therefore take r = 2.

o For g € F, define K = F(+/B).

Case 1
o We first consider curves E/F where ry4(E£/F) = 0.
o Generically, ra4(E/K) = 0 as well.
o Expect J to often be nonzero, unrelated to global points.
@ We have checked that this is the case in the following:
» F=Q(/13), E=236.1-a2, B3 = —9w + 8, — 12w + 17.
» F=Q(\37),E=236.1-a2, 3 =—4w +9.
For the following two curves, we have observed J ~ 0 for many /5.
» F =Q(\/37), E =36.1-b1.
» F =Q(\/37), E =36.1-c1.

Due to the fact that ay, (E)ay,(E) = —1 — extra vanishing of L.

(]

©
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https://www.lmfdb.org/EllipticCurve/2.2.13.1/36.1/a/2
https://www.lmfdb.org/EllipticCurve/2.2.37.1/36.1/a/2
https://www.lmfdb.org/EllipticCurve/2.2.37.1/36.1/b/1
https://www.lmfdb.org/EllipticCurve/2.2.37.1/36.1/c/1

Numerical evidence. Case 2

o We consider curves E/F where ry4(E/F) = 1.

o We impose that ay, (E)ap, (E) = 1, so max{p(E, S), p(EX, S)} > 2.

o Generically, rag(E/K) = 2.

o Inthose cases, J should vanish because of an exceptional zero in
the p-adic L-function.

We have checked that this is the case (up to precision p%) in the
following:

©

» F=Q(W13), E =2251-b2, f = —3w — 1, —12w + 17.
» F =Q(V37), E =63.1-a2, 8 = —4w + 9.
» F =Q(+/37), E=63.1-b1, f = —4w + 9.
» F =Q(v/37), E=63.2-al, f = —3w + 5.
» F = Q(v/37), E = 63.2-b1, f = —3w + 5.
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https://www.lmfdb.org/EllipticCurve/2.2.13.1/225.1/b/2
https://www.lmfdb.org/EllipticCurve/2.2.37.1/63.1/a/2
https://www.lmfdb.org/EllipticCurve/2.2.37.1/63.1/b/1
https://www.lmfdb.org/EllipticCurve/2.2.37.1/63.2/a/1
https://www.lmfdb.org/EllipticCurve/2.2.37.1/63.2/b/1

Numerical evidence. Case 3

o We consider curves E/F where rag(E/F) = 1.
o We impose that ay, (E)ap, (E) = —1, so max{p(E, S), p(EX, S)} = 2.
o Generically, rag(E/K) = 2.
o In those cases, J should be nonzero and related to global points.
@ We have checked that this is the case in the following:

» F =Q(+13), E = 153.2-e2, f = —9w + 8.

> Q(+/13), E =207.1-c1, f = —9w — 4, —9w + 8.

> Q(v/37), E =63.1-d1, 3 = —4w + 9.

> Q(+v37), E=63.2-d1,8=—3w+5

> Q(+v37), E =99.2-c1, 8 = —8w + 17, —16w + 9, —20w + 29,

—9w + 14, —12w + 29, —32w + 41, —12w — 7, —35w + 17.

o In one of the examples, we obtain what seems to be zero. We

expect that this is due to the low working precision. ..
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https://www.lmfdb.org/EllipticCurve/2.2.13.1/153.2/e/2
https://www.lmfdb.org/EllipticCurve/2.2.13.1/207.1/c/1
https://www.lmfdb.org/EllipticCurve/2.2.37.1/63.1/d/1
https://www.lmfdb.org/EllipticCurve/2.2.37.1/63.2/d/1
https://www.lmfdb.org/EllipticCurve/2.2.37.1/99.2/c/1

A pretty example

1

,\ T T T " F=Q(\/ﬁ),ﬂ]=1+%/ﬁ,
E/F :y?+ay+y = 22 +wr?+(w + 1) 2 +2,
K = F(+/B), with 3 = 62 — 21w.

©

E(K)®Q = (P,Q), with

P=@3B-wd4—w)and Q = (8 — 2w, (52w + )\/B+ Bw - 9).
We may compute

logg, (P1 — P1) ®logg, (Q2 — Q2) —logg, (Q1 — Q1) ®logp, (P2 — P2) € Q2 ®Q,2.
Projecting Q2 ®Q,2 — Q,, get 2- 3% + 36 4+ 2. 37 + 39 4 O(317).
This matches our computation of J = 2 - 3% + 35 4 O(37).

©

© ©

1
https://www.lmfdb.org/EllipticCurve/2.2.37.1/63.2/d/1
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https://www.lmfdb.org/EllipticCurve/2.2.37.1/63.2/d/1
https://www.lmfdb.org/EllipticCurve/2.2.37.1/63.2/d/1

Computation of the cohomology class
o Assume, for concreteness, that r = 2.

o We start with ¢ € H (Tg(p1p2),Z).

@ Shapiro isomorphism yields an isomorphism
H'(To(p1p2), Z) = H'(T's, colnd Z).
~ [¢r] € H(T's, colnd Z).
» The exact cocycle representative depends on a choice of coset
representatives for I's /To(p1p2)-

@ Have a long-exact sequence
H'(T's, HC(Z)) — H'(T's, colnd Z) = @ H' (T's, Maps(V(T,) xE(Ts»), Z))
pesS
0 ¢p is p-new ~ [®g] e HY(I'g, HC(Z)) liting [¢x].
o When r = 1, one can choose appropriate coset representatives
(called radial), which ensure that ®p = ¢p.

@ We don’t know whether there are coset representatives that allow for
that in our setting.
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Lifting to H'(I'g, HC(Z))
o We know that 3¢ : £(Ts) — Z such that pp — ¢ € Z'(T's, HC(Z)).
o First, compute v(¢g) = d(f1, f2),
J1:V(Tpy) x E(Tpy) = 2, f2: E(Tyy) x V(Tpy) — L

o For each (v,e) € V(T;,) x E(Ty,), pick v € I's such that
Y(v,e) = (vo, ex), With vy € {vy, U4 }.

fl(vve) - fl(v()?e*) = V1(¢E(7>)(vove*)'

o Analogously, fa(e,v) — fa(ex, v0) = va(PE(7))(ex, vo)-

o Hence the four values fi(vs, ex), f1(0x, €x), fo(vs,€x), fo(V,€x)
determine all the remaining ones.

@ Knowing the functions f; and f> to some fixed radius allows to find ¢
such that v(¢) = (f1, f2), by solving a linear system of equations.
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Linear algebra

©

To compute ¢ we need to solve a system of:

- 2“’“}2(_”:’1) pd+§:1‘2 — O(p*¥—1) equations, in

> % = O(p*?) unknowns.
p=3,d="T:get 12,740,008 equations in 19, 114, 384 unknowns.
Luckily, it's sparse: only p + 1 unknowns involved in each equation.

We implemented a custom row reduction, avoiding division and
choosing pivots that maintain sparsity.

Takes ~ 60 hours using 16 CPUs to compute f; and fs.
Solve the system in ~ 2 hours (non-parallel), using ~ 300GB RAM.
Integration takes ~ 10 hours using 64 CPUs.

© © ©

© © ©o

Marc Masdeu Plectic Stark—Heegner points 21/22



Further work

o So far we can compute invariants attached to differences 7, — 7.
» Fornea—Gehrmann: refined invariants attached to 7,,, more akin to
Darmon points. Effective computation?
o The Riemann sums algorithm runs in exponential time in the
precision.
» Need an overconvergent method to compute the invariants in
polynomial time.
o More experiments are needed in other settings (imaginary quadratic,
mixed signature).

o To compute plectic Heegner points, need fundamental domains for
Bruhat-Tits trees acted on by groups attached to totally definite
quaternion algebras (work in progress).
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Merci !

http://www.mat .uab.cat/~masdeu/
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