Numerical experiments with plectic Stark-HeEgner points

LFANT SEminar

April 6, 2021

Marc Masdeu

Universitat Autònoma de Barcelona

The Hasse-Weil L-function

- Let F be a number field.
- Let $E_{/ F}$ be an elliptic curve of conductor $\mathfrak{N}=\mathfrak{N}_{E}$.
- Let K / F be a quadratic extension of F.
- Assume for simplicity that \mathfrak{N} is square-free, coprime to $\operatorname{disc}(K / F)$.
- For each prime \mathfrak{p} of $K, a_{\mathfrak{p}}(E)=1+|\mathfrak{p}|-\# E\left(\mathbb{F}_{\mathfrak{p}}\right)$.

Hasse-Weil L-function of the base change of E to $K(\Re(s) \gg 0)$

$$
L(E / K, s)=\prod_{\mathfrak{p} \mid \mathfrak{N}}\left(1-a_{\mathfrak{p}}|\mathfrak{p}|^{-s}\right)^{-1} \times \prod_{\mathfrak{p} \mathfrak{\mathfrak { N }}}\left(1-a_{\mathfrak{p}}|\mathfrak{p}|^{-s}+|\mathfrak{p}|^{1-2 s}\right)^{-1}
$$

- Modularity conjecture \Longrightarrow
- Analytic continuation of $L(E / K, s)$ to \mathbb{C}.
- Functional equation relating $s \leftrightarrow 2-s$.

The BSD conjecture and Heegner points

Brian Birch

Sir P. Swinnerton-Dyer

Kurt Heegner

Coarse version of BSD conjecture

$$
\operatorname{ord}_{s=1} L(E / K, s)=\operatorname{rk}_{\mathbb{Z}} E(K) .
$$

Heegner Points

- Only for F totally real and K / F totally complex (CM extension).
- Simplest setting: $F=\mathbb{Q}$ (and K / \mathbb{Q} imaginary quadratic), and $\ell \mid \mathfrak{N} \Longrightarrow \ell$ split in K.

Heegner Points (K / \mathbb{Q} imaginary quadratic)

- $\Gamma_{0}(\mathfrak{N})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): \mathfrak{N} \mid c\right\}$.
- Attach to E a modular form:

$$
f_{E}(z)=\sum_{n \geqslant 1} a_{n} e^{2 \pi i n z} \in S_{2}\left(\Gamma_{0}(\mathfrak{N})\right)
$$

- Given $\tau \in K \cap \mathcal{H}$, set $J_{\tau}=\int_{\infty}^{\tau} 2 \pi i f_{E}(z) d z \in \mathbb{C}$.
- Well-defined up to the lattice

$$
\Lambda_{E}=\left\{\int_{\gamma} 2 \pi i f_{E}(z) d z \mid \gamma \in \mathrm{H}_{1}\left(\overline{\Gamma_{0}(\mathfrak{N}) \backslash \mathcal{H}}, \mathbb{Z}\right)\right\}
$$

- There exists an isogeny $\eta: \mathbb{C} / \Lambda_{E} \rightarrow E(\mathbb{C})$.
- Set $P_{\tau}=\eta\left(J_{\tau}\right) \in E(\mathbb{C})$.
- Fact: $P_{\tau} \in E\left(H_{\tau}\right)$, where H_{τ} / K is a class field attached to τ.

Theorem (Gross-Zagier)

$$
P_{K}=\operatorname{Tr}_{H_{\tau} / K}\left(P_{\tau}\right) \text { nontorsion } \Longleftrightarrow L^{\prime}(E / K, 1) \neq 0 .
$$

Darmon points - history

- $n=\#\left\{v \mid \infty_{F}: v\right.$ splits in $\left.K\right\}$.
- $S(E, K)=\left\{v \mid \mathfrak{N} \infty_{F}: v\right.$ not split in $\left.K\right\}$.
- Sign of functional equation for $L(E / K, s)$ should be $(-1)^{\# S(E, K)}$.
- Assume that $s=\# S(E, K)$ is odd.
- Fix a finite place $\mathfrak{p} \in S(E, K)$.
- There is also an archimedean version...
- Darmon ('99): First construction, with $F=\mathbb{Q}$ and $s=1$.
- Trifkovic ('06): F imaginary quadratic, still $s=1$.
- Greenberg ('08): F totally real, arbitrary ramification, and $s \geqslant 1$.
- Guitart-M.-Sengun ('14): F of arbitrary signature, arbitrary ramification, and $s \geqslant 1$.
- Guitart-M.-Molina ('18): Adelic generalization, removing all restrictions.

Review of Darmon points

- Define a quaternion algebra $B_{/ F}$ and a group $\Gamma \subset \mathrm{SL}_{2}\left(F_{\mathfrak{p}}\right)$.
- The group Γ acts (non-discretely) on \mathcal{H}_{p}.
- Attach to E a cohomology class

$$
\Phi_{E} \in \mathrm{H}^{n}\left(\Gamma, \operatorname{Meas}^{0}\left(\mathbb{P}^{1}\left(F_{\mathfrak{p}}, \mathbb{Z}\right)\right)\right)
$$

- Attach to each embedding $\psi: K \hookrightarrow B$ a homology class

$$
\Theta_{\psi} \in \mathrm{H}_{n}\left(\Gamma, \operatorname{Div}^{0} \mathcal{H}_{\mathfrak{p}}\right)
$$

- Well defined up to the image of $\mathrm{H}_{n+1}(\Gamma, \mathbb{Z}) \xrightarrow{\delta} \mathrm{H}_{n}\left(\Gamma, \operatorname{Div}^{0} \mathcal{H}_{\mathfrak{p}}\right)$.
- Here δ is a connecting homomorphism arising from

$$
0 \longrightarrow \operatorname{Div}^{0} \mathcal{H}_{\mathfrak{p}} \longrightarrow \operatorname{Div} \mathcal{H}_{\mathfrak{p}} \xrightarrow{\text { deg }} \mathbb{Z} \longrightarrow 0
$$

- Cap-product and integration on the coefficients yield an element:

$$
J_{\psi}=\left\langle\Phi_{E}, \Theta_{\psi}\right\rangle \in K_{\mathfrak{p}}^{\times}
$$

- J_{ψ} well-defined up to a multiplicative lattice $L=\left\langle\Phi_{E}, \delta\left(\mathrm{H}_{n+1}(\Gamma, \mathbb{Z})\right)\right\rangle$.

Conjectures on Darmon points

$$
J_{\psi}=\left\langle\Phi_{E}, \Theta_{\psi}\right\rangle \in K_{\mathfrak{p}}^{\times} / L
$$

Conjecture 1

There is an isogeny $\eta_{\text {Tate }}: K_{\mathfrak{p}}^{\times} / L \rightarrow E\left(K_{\mathfrak{p}}\right)$.

- Proven for totally-real fields (Greenberg, Rotger-Longo-Vigni, Spiess, Gehrmann-Rosso).
The Darmon point attached to E and $\psi: K \rightarrow B$ is:

$$
P_{\psi}=\eta_{\text {Tate }}\left(J_{\psi}\right) \in E\left(K_{\mathfrak{p}}\right) .
$$

Conjecture 2

(1) The local point P_{ψ} is global, and belongs to $E\left(K^{\mathrm{ab}}\right)$.
(2) P_{ψ} is nontorsion if and only if $L^{\prime}(E / K, 1) \neq 0$.

- Predicts also the exact number field over which P_{ψ} is defined.
- Includes a Shimura reciprocity law like that of Heegner points.

The $\{\mathfrak{p}\}$-arithmetic group Γ

- $B_{/ F}=$ quaternion algebra with $\operatorname{Ram}(B)=S(E, K) \backslash\{\mathfrak{p}\}$.
- Induces a factorization $\mathfrak{N}=\mathfrak{p} \mathfrak{D}$.
- Set $R_{0}^{B}(\mathfrak{p m}) \subset R_{0}^{B}(\mathfrak{m}) \subset B$, Eichler orders of levels $\mathfrak{p m}$ and \mathfrak{m}.
- Define $\Gamma_{0}^{B}(\mathfrak{p m})=R_{0}^{B}(\mathfrak{p m})_{1}^{\times}$and $\Gamma_{0}^{B}(\mathfrak{m})=R_{0}^{B}(\mathfrak{m})_{1}^{\times}$.
- Set

$$
\Gamma=\left(R_{0}^{B}(\mathfrak{m})\left[\mathfrak{p}^{-1}\right]\right)_{1}^{\times}
$$

- Fix an embedding $\iota_{\mathfrak{p}}: R_{0}^{B}(\mathfrak{m}) \hookrightarrow M_{2}\left(\mathbb{Z}_{\mathfrak{p}}\right)$.

Lemma

ι_{p} induces bijections

$$
\Gamma / \Gamma_{0}^{B}(\mathfrak{m}) \cong \mathcal{V}_{0}, \quad \Gamma / \Gamma_{0}^{B}(\mathfrak{p m}) \cong \mathcal{E}_{0}
$$

\mathcal{V}_{0} (resp. \mathcal{E}_{0}) are the even vertices (resp. edges) of the BT tree.

Integration on $\mathcal{H}_{\mathfrak{p}}$

- Let $\mu \in \operatorname{Meas}^{0}\left(\mathbb{P}^{1}\left(F_{\mathfrak{p}}\right), \mathbb{Z}\right)$.
- Coleman integration on $\mathcal{H}_{\mathfrak{p}}=\mathbb{P}^{1}\left(\mathbb{C}_{p}\right) \backslash \mathbb{P}^{1}\left(F_{\mathfrak{p}}\right)$ can be defined as:

$$
\int_{\tau_{1}}^{\tau_{2}} \omega_{\mu}=\int_{\mathbb{P}^{1}\left(F_{\mathfrak{p}}\right)} \log _{\mathfrak{p}}\left(\frac{t-\tau_{2}}{t-\tau_{1}}\right) d \mu(t)=\underset{\mathcal{U}}{\lim } \sum_{U \in \mathcal{U}} \log _{\mathfrak{p}}\left(\frac{t_{U}-\tau_{2}}{t_{U}-\tau_{1}}\right) \mu(U)
$$

- For $\Gamma \subset \mathrm{PGL}_{2}\left(F_{\mathfrak{p}}\right)$, induce a pairing

$$
\mathrm{H}^{i}\left(\Gamma, \operatorname{Meas}^{0}\left(\mathbb{P}^{1}\left(F_{\mathfrak{p}}\right), \mathbb{Z}\right)\right) \times \mathrm{H}_{i}\left(\Gamma, \operatorname{Div}^{0} \mathcal{H}_{\mathfrak{p}}\right) \xrightarrow{\langle\cdot \cdot\rangle} \mathbb{C}_{\mathfrak{p}}
$$

- Bruhat-Tits tree of $\mathrm{GL}_{2}\left(F_{\mathfrak{p}}\right),|\mathfrak{p}|=2$.
- $\mathcal{H}_{\mathfrak{p}}$ having the Bruhat-Tits as retract.
- Can identify $\operatorname{Meas}^{0}\left(\mathbb{P}^{1}\left(F_{\mathfrak{p}}\right), \mathbb{Z}\right) \cong \mathrm{HC}(\mathbb{Z})$ $=\left\{c: \mathcal{E}\left(\mathcal{T}_{\mathfrak{p}}\right) \rightarrow \mathbb{Z} \mid \sum_{o(e)=v} c(e)=0\right\}$.
- t_{U} is any point in $U \subset \mathbb{P}^{1}\left(F_{\mathfrak{p}}\right)$.

Plectic conjectures

Jan Nekováŕ

66
$L^{(r)}(E / K, 1)$ should be related to
CM-points on a r-dimensional quaternionic Shimura variety.

Goal : Construct $Q \in \wedge^{r}(E(K))$ such that

$$
Q \text { non-torsion } \Longleftrightarrow L^{(r)}(E / K, 1) \neq 0
$$

p-adic Plectic invariants

- Let $r \geqslant 1$ with same parity as $\# S(E, K)$.
- $S=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}\right\} \subseteq S(E, K),\left|\mathfrak{p}_{i}\right|=p$.
- Let $B_{/ F}$ with $\operatorname{Ram}(B)=S(E, K) \backslash S$.
- Set $\Gamma_{S}=\left(R_{0}^{B}(\mathfrak{m})\left[S^{-1}\right]\right)_{1}^{\times}$.

Michele Fornea

$$
F_{S}=\prod_{\mathfrak{p} \in S} F_{\mathfrak{p}}, \mathbb{P}^{1}\left(F_{S}\right)=\prod_{\mathfrak{p} \in S} \mathbb{P}^{1}\left(F_{\mathfrak{p}}\right), \text { and } \mathcal{H}_{S}=\prod_{\mathfrak{p} \in S} \mathcal{H}_{\mathfrak{p}}
$$

- Construct $\Phi_{E} \in \mathrm{H}^{n}\left(\Gamma_{S}, \operatorname{Meas}^{0}\left(\mathbb{P}^{1}\left(F_{S}\right), \mathbb{Z}\right)\right)$.
- $\mu\left(\mathbb{P}^{1}\left(F_{\mathfrak{p}}\right) \times U_{S^{\mathfrak{p}}}\right)=0$, for all $\mathfrak{p} \in S$, all $U_{S^{\mathfrak{p}}} \subseteq \mathbb{P}^{1}\left(F_{S^{\mathfrak{p}}}\right)$.
- Construct $\Theta_{\psi} \in \mathrm{H}_{n}\left(\Gamma_{S}, \mathbb{Z}_{0}\left(\mathcal{H}_{S}\right)\right)$.
- Pairing $\operatorname{Meas}^{0}\left(\mathbb{P}^{1}\left(F_{S}\right), \mathbb{Z}\right) \times \operatorname{Div}^{0}\left(\mathcal{H}_{S}\right) \rightarrow \bigotimes_{\mathfrak{p} \in S} K_{\mathfrak{p}}$.
- $\mathrm{H}^{n}\left(\Gamma_{S}, \operatorname{Meas}^{0}\left(\mathbb{P}^{1}\left(F_{S}\right), \mathbb{Z}\right)\right) \times \mathrm{H}_{n}\left(\Gamma_{S}, \mathbb{Z}_{0}\left(\mathcal{H}_{S}\right)\right) \xrightarrow{\langle\cdot,} \otimes_{\mathfrak{p} \in S} K_{\mathfrak{p}}$.

Plectic invariant attached to E, K and S

$$
J:=\left\langle\Phi_{E}, \Theta_{\psi}\right\rangle \in \bigotimes_{\mathfrak{p} \in S} K_{\mathfrak{p}} .
$$

Cohomology class

- Consider $\varphi_{E} \in \mathrm{H}^{n}\left(\Gamma_{0}^{B}\left(p_{S} \mathfrak{m}\right), \mathbb{Z}\right)$ attached to E.
- Via Eichler-Shimura and Jacquet-Langlands.
- Shapiro isomorphism $\leadsto \tilde{\varphi}_{E} \in \mathrm{H}^{n}\left(\Gamma_{S}, \operatorname{coInd}_{\Gamma_{0}^{B}\left(p_{S} \mathfrak{m}\right)}^{\Gamma_{S}} \mathbb{Z}\right)$.
- $\operatorname{coInd}_{\Gamma_{0}^{B}\left(p_{S} \mathfrak{m}\right)}^{\Gamma_{S}} \mathbb{Z} \cong \operatorname{Maps}\left(\mathcal{E}\left(\mathcal{T}_{S}\right), \mathbb{Z}\right)$.
- $\mathrm{HC}_{S}(\mathbb{Z})=\left\{c: \mathcal{E}\left(\mathcal{T}_{S}\right) \rightarrow \mathbb{Z}\right.$ "harmonic in each variable" $\}:$

$$
0 \rightarrow \operatorname{HC}_{S}(\mathbb{Z}) \rightarrow \operatorname{Maps}\left(\mathcal{E}\left(\mathcal{T}_{S}\right), \mathbb{Z}\right) \xrightarrow{\nu} \bigoplus_{\mathfrak{p} \in S} \operatorname{Maps}\left(\mathcal{V}\left(\mathcal{T}_{\mathfrak{p}}\right) \times \mathcal{E}\left(\mathcal{T}_{S^{\mathfrak{p}}}\right), \mathbb{Z}\right) \rightarrow \cdots
$$

- $\operatorname{Meas}^{0}\left(\mathbb{P}^{1}\left(F_{S}\right), \mathbb{Z}\right)$ identified with $\mathrm{HC}_{S}(\mathbb{Z})$.
- Since φ_{E} is p-new, have an isomorphism

$$
\mathrm{H}^{n}\left(\Gamma_{S}, \mathrm{HC}_{S}(\mathbb{Z})\right)_{E} \cong \mathrm{H}^{n}\left(\Gamma_{S}, \operatorname{Maps}\left(\mathcal{E}\left(\mathcal{T}_{S}\right), \mathbb{Z}\right)\right)_{E}
$$

- Therefore we can define Φ_{E}, unique up to sign.

Homology class

- Let $\psi: \mathcal{O} \hookrightarrow R_{0}^{B}(\mathfrak{m})$ be an embedding of an order \mathcal{O} of K.
- Which is optimal: $\psi(\mathcal{O})=R_{0}^{B}(\mathfrak{m}) \cap \psi(K)$.
- Consider the group $\mathcal{O}_{1}^{\times}=\left\{u \in \mathcal{O}^{\times}: \operatorname{Nm}_{K / F}(u)=1\right\}$.
- $\operatorname{rank}\left(\mathcal{O}_{1}^{\times}\right)=\operatorname{rank}\left(\mathcal{O}^{\times}\right)-\operatorname{rank}\left(\mathcal{O}_{F}^{\times}\right)=n$.
- Choose a basis $u_{1}, \ldots, u_{n} \in \mathcal{O}_{1}^{\times}$for the non-torsion units.

$$
\Delta_{\psi}=\psi\left(u_{1}\right) \wedge \cdots \wedge \psi\left(u_{n}\right) \in \mathrm{H}_{n}(\Gamma, \mathbb{Z})
$$

- K_{1}^{\times}acts on \mathcal{H}_{S} through $K_{1}^{\times} \xrightarrow{\psi} B_{1}^{\times} \xrightarrow{\oplus_{\mathrm{p} \in S} \iota_{\mathrm{p}}} \mathrm{SL}_{2}\left(F_{S}\right)$.
- Let $\tau_{\mathfrak{p}}, \bar{\tau}_{\mathfrak{p}}$ be the fixed points of K_{1}^{\times}acting on $\mathcal{H}_{\mathfrak{p}}$.
- Set $D=\bigotimes_{\mathfrak{p} \in S}\left(\tau_{\mathfrak{p}}-\bar{\tau}_{\mathfrak{p}}\right) \in \mathbb{Z}_{0}\left(\mathcal{H}_{S}\right)$.
- Define $\Theta_{\psi}=\left[\Delta_{\psi} \otimes D\right] \in \mathrm{H}_{n}\left(\Gamma_{S}, \mathbb{Z}_{0}\left(\mathcal{H}_{S}\right)\right)$. Ideally, we'd like to define a class attached to $\underset{\mathfrak{p} \in S}{\bigotimes} \tau_{\mathfrak{p}}$.

Conjectures

- Granting BSD + parity conjectures, expect $r_{\text {alg }}(E / K) \equiv r(\bmod 2)$.
- Fix embeddings $\iota_{\mathfrak{p}}: K \hookrightarrow K_{\mathfrak{p}}$. Get a regulator map $\operatorname{det}: \wedge^{r} E(K) \rightarrow \hat{E}\left(K_{S}\right), \quad Q_{1} \wedge \cdots \wedge Q_{r} \mapsto \operatorname{det}\left(\iota_{\mathfrak{p}_{i}}\left(Q_{j}\right)\right)$.

Conjecture 1 (algebraicity)

Suppose that $r_{\mathrm{alg}}(E / K) \geqslant r$. Then:

- $\exists w \in \wedge^{r} E(K)$ such that $\eta_{\text {Tate }}(J)=\operatorname{det}(w)$.
- $\eta_{\text {Tate }}(J) \neq 0 \Longrightarrow r_{\text {alg }}(E / K)=r$.

Conjectures (II)

- Write $T(E)=\left\{\mathfrak{p} \in S \mid a_{\mathfrak{p}}(E)=1\right\}$.
- Set $\rho(E, S)=r_{\text {alg }}(E / F)+|T(E)|$.
- Bergunde-Gehrmann construct a p-adic L-function attached to (E, K, S).
- Interpolates central L-values of twists of by characters ramified at S.
- Vanishes to order at least $r(E, K, S)=\max \left\{\rho(E, S), \rho\left(E^{K}, S\right)\right\}$.
- Fornea-Gehrmann show that $L_{p}^{(r(E, K, S))} \doteq J$.
- Assume that $F=\mathbb{Q}(j(E))$.

Conjecture 2 (non-vanishing)

- If $r_{\mathrm{alg}}(E / K)=r=\max \left\{\rho(E, S), \rho\left(E^{K}, S\right)\right\}$, then $J \neq 0$.
- If $r_{\text {alg }}(E / K)<r$, then $J \neq 0$ (but don't know arithmetic meaning).

Provided that the order of vanishing of L_{p} allows for it.

Numerical evidence

Joint work with Xevi Guitart and Michele Fornea.

- We have restricted to F real quadratic of narrow class number one.
- Therefore take $r=2$.
- For $\beta \in F$, define $K=F(\sqrt{\beta})$.

Case 1

- We first consider curves E / F where $r_{\mathrm{alg}}(E / F)=0$.
- Generically, $r_{\text {alg }}(E / K)=0$ as well.
- Expect J to often be nonzero, unrelated to global points.
- We have checked that this is the case in the following:
- $F=\mathbb{Q}(\sqrt{13}), E=36.1-\mathrm{a} 2, \beta=-9 w+8,-12 w+17$.
- $F=\mathbb{Q}(\sqrt{37}), E=36.1-\mathrm{a} 2, \beta=-4 w+9$.
- For the following two curves, we have observed $J \simeq 0$ for many β.
- $F=\mathbb{Q}(\sqrt{37}), E=36.1$-b1.
- $F=\mathbb{Q}(\sqrt{37}), E=36.1$-c1.
- Due to the fact that $a_{\mathfrak{p}_{1}}(E) a_{\mathfrak{p}_{2}}(E)=-1 \Longrightarrow$ extra vanishing of L_{p}.

Numerical evidence. Case 2

- We consider curves E / F where $r_{\text {alg }}(E / F)=1$.
- We impose that $a_{\mathfrak{p}_{1}}(E) a_{\mathfrak{p}_{2}}(E)=1$, so $\max \left\{\rho(E, S), \rho\left(E^{K}, S\right)\right\}>2$.
- Generically, $r_{\text {alg }}(E / K)=2$.
- In those cases, J should vanish because of an exceptional zero in the p-adic L-function.
- We have checked that this is the case (up to precision p^{6}) in the following:
- $F=\mathbb{Q}(\sqrt{13}), E=225.1-\mathrm{b} 2, \beta=-3 w-1,-12 w+17$.
- $F=\mathbb{Q}(\sqrt{37}), E=63.1-\mathrm{a} 2, \beta=-4 w+9$.
- $F=\mathbb{Q}(\sqrt{37}), E=63.1-\mathrm{b} 1, \beta=-4 w+9$.
- $F=\mathbb{Q}(\sqrt{37}), E=63.2-\mathrm{a} 1, \beta=-3 w+5$.
- $F=\mathbb{Q}(\sqrt{37}), E=63.2-\mathrm{b} 1, \beta=-3 w+5$.

Numerical evidence. Case 3

- We consider curves E / F where $r_{\text {alg }}(E / F)=1$.
- We impose that $a_{\mathfrak{p}_{1}}(E) a_{\mathfrak{p}_{2}}(E)=-1$, so $\max \left\{\rho(E, S), \rho\left(E^{K}, S\right)\right\}=2$.
- Generically, $r_{\text {alg }}(E / K)=2$.
- In those cases, J should be nonzero and related to global points.
- We have checked that this is the case in the following:
- $F=\mathbb{Q}(\sqrt{13}), E=153.2-\mathrm{e} 2, \beta=-9 w+8$.
- $F=\mathbb{Q}(\sqrt{13}), E=207.1-c 1, \beta=-9 w-4,-9 w+8$.
- $F=\mathbb{Q}(\sqrt{37}), E=63.1-\mathrm{d} 1, \beta=-4 w+9$.
- $F=\mathbb{Q}(\sqrt{37}), E=63.2-\mathrm{d} 1, \beta=-3 w+5$
- $F=\mathbb{Q}(\sqrt{37}), E=99.2-c 1, \beta=-8 w+17,-16 w+9,-20 w+29$,

$$
-9 w+14,-12 w+29,-32 w+41,-12 w-7,-35 w+17
$$

- In one of the examples, we obtain what seems to be zero. We expect that this is due to the low working precision...

A pretty example

$$
\begin{aligned}
& F=\mathbb{Q}(\sqrt{13}), w=\frac{1+\sqrt{13}}{2} \\
& E / F: y^{2}+x y+y=x^{3}+w x^{2}+(w+1) x+2, \\
& K=F(\sqrt{\beta}), \text { with } \beta=62-21 w .
\end{aligned}
$$

- $E(K) \otimes \mathbb{Q}=\langle P, Q\rangle$, with $P=(3-w, 4-w)$ and $Q=\left(8-\frac{25}{9} w,\left(\frac{-23}{27} w+\frac{17}{6}\right) \sqrt{\beta}+\frac{25}{18} w-\frac{9}{2}\right)$.
- We may compute
$\log _{E_{1}}\left(P_{1}-\bar{P}_{1}\right) \otimes \log _{E_{2}}\left(Q_{2}-\bar{Q}_{2}\right)-\log _{E_{1}}\left(Q_{1}-\bar{Q}_{1}\right) \otimes \log _{E_{2}}\left(P_{2}-\bar{P}_{2}\right) \in \mathbb{Q}_{p^{2}} \otimes \mathbb{Q}_{p^{2}}$.
- Projecting $\mathbb{Q}_{p^{2}} \otimes \mathbb{Q}_{p^{2}} \rightarrow \mathbb{Q}_{p}$, get $2 \cdot 3^{2}+3^{6}+2 \cdot 3^{7}+3^{9}+O\left(3^{10}\right)$.
- This matches our computation of $J=2 \cdot 3^{2}+3^{6}+O\left(3^{7}\right)$.

[^0]
Computation of the cohomology class

- Assume, for concreteness, that $r=2$.
- We start with $\varphi_{E} \in \mathrm{H}^{1}\left(\Gamma_{0}\left(\mathfrak{p}_{1} \mathfrak{p}_{2}\right), \mathbb{Z}\right)$.
- Shapiro isomorphism yields an isomorphism $\mathrm{H}^{1}\left(\Gamma_{0}\left(\mathfrak{p}_{1} \mathfrak{p}_{2}\right), \mathbb{Z}\right) \cong \mathrm{H}^{1}\left(\Gamma_{S}\right.$, coInd $\left.\mathbb{Z}\right)$.
$-\sim\left[\tilde{\varphi}_{E}\right] \in \mathrm{H}^{1}\left(\Gamma_{S}, \operatorname{coInd} \mathbb{Z}\right)$.
- The exact cocycle representative depends on a choice of coset representatives for $\Gamma_{S} / \Gamma_{0}\left(\mathfrak{p}_{1} \mathfrak{p}_{2}\right)$.
- Have a long-exact sequence

$$
\mathrm{H}^{1}\left(\Gamma_{S}, \mathrm{HC}(\mathbb{Z})\right) \rightarrow \mathrm{H}^{1}\left(\Gamma_{S}, \operatorname{coInd} \mathbb{Z}\right) \xrightarrow{\nu} \bigoplus_{\mathfrak{p} \in S} \mathrm{H}^{1}\left(\Gamma_{S}, \operatorname{Maps}\left(\mathcal{V}\left(\mathcal{T}_{\mathfrak{p}}\right) \times \mathcal{E}\left(\mathcal{T}_{S^{\mathfrak{p}}}\right), \mathbb{Z}\right)\right)
$$

- φ_{E} is p-new $\leadsto\left[\Phi_{E}\right] \in \mathrm{H}^{1}\left(\Gamma_{S}, \mathrm{HC}(\mathbb{Z})\right)$ lifting $\left[\tilde{\varphi}_{E}\right]$.
- When $r=1$, one can choose appropriate coset representatives (called radial), which ensure that $\Phi_{E}=\tilde{\varphi}_{E}$.
- We don't know whether there are coset representatives that allow for that in our setting.

Lifting to $\mathrm{H}^{1}\left(\Gamma_{S}, \mathrm{HC}(\mathbb{Z})\right)$

- We know that $\exists \phi: \mathcal{E}\left(\mathcal{T}_{S}\right) \rightarrow \mathbb{Z}$ such that $\tilde{\varphi}_{E}-\partial \phi \in Z^{1}\left(\Gamma_{S}, \mathrm{HC}(\mathbb{Z})\right)$.
- First, compute $\nu\left(\tilde{\varphi}_{E}\right)=\partial\left(f_{1}, f_{2}\right)$,

$$
f_{1}: \mathcal{V}\left(\mathcal{T}_{\mathfrak{p}_{1}}\right) \times \mathcal{E}\left(\mathcal{T}_{\mathfrak{p}_{2}}\right) \rightarrow \mathbb{Z}, \quad f_{2}: \mathcal{E}\left(\mathcal{T}_{\mathfrak{p}_{1}}\right) \times \mathcal{V}\left(\mathcal{T}_{\mathfrak{p}_{2}}\right) \rightarrow \mathbb{Z}
$$

- For each $(v, e) \in \mathcal{V}\left(\mathcal{T}_{\mathfrak{p}_{1}}\right) \times \mathcal{E}\left(\mathcal{T}_{\mathfrak{p}_{2}}\right)$, pick $\gamma \in \Gamma_{S}$ such that $\gamma(v, e)=\left(v_{0}, e_{*}\right)$, with $v_{0} \in\left\{v_{*}, \hat{v}_{*}\right\}$.

$$
f_{1}(v, e)-f_{1}\left(v_{0}, e_{*}\right)=\nu_{1}\left(\tilde{\varphi}_{E}(\gamma)\right)\left(v_{0}, e_{*}\right)
$$

- Analogously, $f_{2}(e, v)-f_{2}\left(e_{*}, v_{0}\right)=\nu_{2}\left(\tilde{\varphi}_{E}(\gamma)\right)\left(e_{*}, v_{0}\right)$.
- Hence the four values $f_{1}\left(v_{*}, e_{*}\right), f_{1}\left(\hat{v}_{*}, e_{*}\right), f_{2}\left(v_{*}, e_{*}\right), f_{2}\left(\hat{v}_{*}, e_{*}\right)$ determine all the remaining ones.
- Knowing the functions f_{1} and f_{2} to some fixed radius allows to find ϕ such that $\nu(\phi)=\left(f_{1}, f_{2}\right)$, by solving a linear system of equations.

Linear algebra

- To compute ϕ we need to solve a system of:
- $2 \frac{(p+1)\left(p^{d}-1\right)}{p-1} \frac{p^{d}+p^{d-1}-2}{p-2}=O\left(p^{2 d-1}\right)$ equations, in
- $\frac{(p+1)^{2}\left(p^{d}-1\right)^{2}}{(p-1)^{2}}=O\left(p^{2 d}\right)$ unknowns.
- $p=3, d=7$: get $12,740,008$ equations in $19,114,384$ unknowns.
- Luckily, it's sparse: only $p+1$ unknowns involved in each equation.
- We implemented a custom row reduction, avoiding division and choosing pivots that maintain sparsity.
- Takes ~ 60 hours using 16 CPUs to compute f_{1} and f_{2}.
- Solve the system in ~ 2 hours (non-parallel), using ~ 300 GB RAM.
- Integration takes ~ 10 hours using 64 CPUs.

Further work

- So far we can compute invariants attached to differences $\tau_{\mathfrak{p}}-\bar{\tau}_{\mathfrak{p}}$.
- Fornea-Gehrmann: refined invariants attached to $\tau_{\mathfrak{p}}$, more akin to Darmon points. Effective computation?
- The Riemann sums algorithm runs in exponential time in the precision.
- Need an overconvergent method to compute the invariants in polynomial time.
- More experiments are needed in other settings (imaginary quadratic, mixed signature).
- To compute plectic Heegner points, need fundamental domains for Bruhat-Tits trees acted on by groups attached to totally definite quaternion algebras (work in progress).

Merci !

> http://www.mat.uab.cat/~masdeu/

[^0]: $1_{\text {https://www.lmfdb.org/EllipticCurve/2.2.37.1/63.2/d/1 }}$

