
NUMERICAL EXPERIMENTS WITH PLECTIC

STARK–HEEGNER POINTS

LFANT SEMINAR

April 6, 2021

Marc Masdeu
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The Hasse-Weil L-function

Let F be a number field.
Let E{F be an elliptic curve of conductor N “ NE .
Let K{F be a quadratic extension of F .

§ Assume for simplicity that N is square-free, coprime to discpK{F q.

For each prime p of K, appEq “ 1` |p| ´#EpFpq.

Hasse-Weil L-function of the base change of E to K (<psq ąą 0)

LpE{K, sq “
ź

p|N

`

1´ ap|p|
´s
˘´1

ˆ
ź

p-N

`

1´ ap|p|
´s ` |p|1´2s

˘´1
.

Modularity conjecture ùñ

§ Analytic continuation of LpE{K, sq to C.
§ Functional equation relating sØ 2´ s.
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The BSD conjecture and Heegner points

Brian Birch Sir P. Swinnerton-Dyer Kurt Heegner

Coarse version of BSD conjecture

ords“1 LpE{K, sq “ rkZEpKq.

Heegner Points
Only for F totally real and K{F totally complex (CM extension).
Simplest setting: F “ Q (and K{Q imaginary quadratic), and
` | N ùñ ` split in K.
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Heegner Points (K{Q imaginary quadratic)
Γ0pNq “ t

`

a b
c d

˘

P SL2pZq : N | cu.
Attach to E a modular form:

fEpzq “
ÿ

ně1

ane
2πinz P S2pΓ0pNqq.

Given τ P K XH, set Jτ “
ż τ

8

2πifEpzqdz P C.

Well-defined up to the lattice
ΛE “

!

ş

γ 2πifEpzqdz | γ P H1

´

Γ0pNqzH,Z
¯)

.
§ There exists an isogeny η : C{ΛE Ñ EpCq.
§ Set Pτ “ ηpJτ q P EpCq.

Fact: Pτ P EpHτ q, where Hτ {K is a class field attached to τ .

Theorem (Gross–Zagier)

PK “ TrHτ {KpPτ q nontorsion ðñ L1pE{K, 1q ‰ 0.
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Darmon points – history

n “ #tv | 8F : v splits in Ku.

SpE,Kq “
!

v | N8F : v not split in K
)

.

Sign of functional equation for LpE{K, sq should be p´1q#SpE,Kq.
Assume that s “ #SpE,Kq is odd.
Fix a finite place p P SpE,Kq.

§ There is also an archimedean version. . .

Darmon (’99): First construction, with F “ Q and s “ 1.
Trifkovic (’06): F imaginary quadratic, still s “ 1.
Greenberg (’08): F totally real, arbitrary ramification, and s ě 1.
Guitart–M.–Sengun (’14): F of arbitrary signature, arbitrary
ramification, and s ě 1.
Guitart–M.–Molina (’18): Adelic generalization, removing all
restrictions.
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Review of Darmon points
Define a quaternion algebra B{F and a group Γ Ă SL2pFpq.

§ The group Γ acts (non-discretely) on Hp.
Attach to E a cohomology class

ΦE P Hn
`

Γ,Meas0pP1pFp,Zqq
˘

.

Attach to each embedding ψ : K ãÑ B a homology class

Θψ P Hn

`

Γ,Div0 Hp

˘

.

§ Well defined up to the image of Hn`1pΓ,Zq
δ
Ñ HnpΓ,Div0 Hpq.

§ Here δ is a connecting homomorphism arising from

0 // Div0 Hp
// DivHp

deg // Z // 0

Cap-product and integration on the coefficients yield an element:

Jψ “ xΦE ,Θψy P K
ˆ
p .

Jψ well-defined up to a multiplicative lattice L “ xΦE , δpHn`1pΓ,Zqqy.
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Conjectures on Darmon points

Jψ “ xΦE ,Θψy P K
ˆ
p {L.

Conjecture 1
There is an isogeny ηTate : Kˆ

p {LÑ EpKpq.

Proven for totally-real fields (Greenberg, Rotger–Longo–Vigni,
Spiess, Gehrmann–Rosso).

The Darmon point attached to E and ψ : K Ñ B is:

Pψ “ ηTatepJψq P EpKpq.

Conjecture 2
1 The local point Pψ is global, and belongs to EpKabq.
2 Pψ is nontorsion if and only if L1pE{K, 1q ‰ 0.

Predicts also the exact number field over which Pψ is defined.
Includes a Shimura reciprocity law like that of Heegner points.
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The tpu-arithmetic group Γ

B{F “ quaternion algebra with RampBq “ SpE,Kqr tpu.
Induces a factorization N “ pDm.
Set RB0 ppmq Ă RB0 pmq Ă B, Eichler orders of levels pm and m.
Define ΓB0 ppmq “ RB0 ppmq

ˆ
1 and ΓB0 pmq “ RB0 pmq

ˆ
1 .

Set
Γ “

`

RB0 pmqrp
´1s

˘ˆ

1
.

Fix an embedding ιp : RB0 pmq ãÑM2pZpq.

Lemma
ιp induces bijections

Γ{ΓB0 pmq – V0, Γ{ΓB0 ppmq – E0

V0 (resp. E0) are the even vertices (resp. edges) of the BT tree.
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Integration on Hp

Let µ P Meas0pP1pFpq,Zq.
Coleman integration on Hp “ P1pCpqr P1pFpq can be defined as:
ż τ2

τ1

ωµ “

ż

P1pFpq

logp

ˆ

t´ τ2

t´ τ1

˙

dµptq “ lim
ÝÑ
U

ÿ

UPU
logp

ˆ

tU ´ τ2

tU ´ τ1

˙

µpUq.

For Γ Ă PGL2pFpq, induce a pairing

HipΓ,Meas0pP1pFpq,Zqq ˆHipΓ,Div0 Hpq
x¨,¨y // Cp .

Bruhat-Tits tree of GL2pFpq, |p| “ 2.
Hp having the Bruhat-Tits as retract.
Can identify Meas0pP1pFpq,Zq – HCpZq
“ tc : EpTpq Ñ Z |

ř

opeq“v cpeq “ 0u.

tU is any point in U Ă P1pFpq.
P1(Fp)

U ⊂ P1(Fp)
eU
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Plectic conjectures

Jan Nekovář Tony Scholl

“ LprqpE{K, 1q should be related to
CM-points on a r-dimensional
quaternionic Shimura variety. ”Goal : Construct Q P ^rpEpKqq such that

Q non-torsion ðñ LprqpE{K, 1q ‰ 0.
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p-adic Plectic invariants

Michele Fornea

Let r ě 1 with same parity as #SpE,Kq.
S “ tp1, . . . , pru Ď SpE,Kq, |pi| “ p.
Let B{F with RampBq “ SpE,Kqr S.

Set ΓS “
`

RB0 pmqrS
´1s

˘ˆ

1
.

FS “
ś

pPS Fp, P1pFSq “
ś

pPS P1pFpq, and HS “
ś

pPS Hp.
Construct ΦE P HnpΓS ,Meas0pP1pFSq,Zqq.

§ µ
`

P1pFpq ˆ USp

˘

“ 0, for all p P S, all USp Ď P1pFSpq.
Construct Θψ P HnpΓS ,Z0pHSqq.
Pairing Meas0pP1pFSq,Zq ˆDiv0pHSq Ñ

Â

pPSKp.

§ Hn
pΓS ,Meas0pP1pFSq,Zqq ˆHnpΓS ,Z0pHSqq

x¨,¨y
Ñ

Â

pPS Kp.

Plectic invariant attached to E, K and S
J :“ xΦE ,Θψy P

Â

pPSKp.
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Cohomology class
Consider ϕE P HnpΓB0 ppSmq,Zq attached to E.

§ Via Eichler–Shimura and Jacquet–Langlands.

Shapiro isomorphism ; ϕ̃E P HnpΓS , coIndΓS
ΓB0 ppSmq

Zq.

coIndΓS
ΓB0 ppSmq

Z – MapspEpTSq,Zq.

HCSpZq “ tc : EpTSq Ñ Z “harmonic in each variable”u:

0 Ñ HCSpZq Ñ MapspEpTSq,Zq
ν
Ñ

à

pPS

MapspVpTpqˆEpTSpq,Zq Ñ ¨ ¨ ¨

Meas0pP1pFSq,Zq identified with HCSpZq.
Since ϕE is p-new, have an isomorphism

HnpΓS ,HCSpZqqE – HnpΓS ,MapspEpTSq,ZqqE .

Therefore we can define ΦE , unique up to sign.
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Homology class

Let ψ : O ãÑ RB0 pmq be an embedding of an order O of K.
§ Which is optimal: ψpOq “ RB0 pmq X ψpKq.

Consider the group Oˆ1 “ tu P Oˆ : NmK{F puq “ 1u.
§ rankpOˆ1 q “ rankpOˆq ´ rankpOˆF q “ n.

Choose a basis u1, . . . , un P Oˆ1 for the non-torsion units.

∆ψ “ ψpu1q ^ ¨ ¨ ¨ ^ ψpunq P HnpΓ,Zq.

Kˆ
1 acts on HS through Kˆ

1
ψ

ãÑ Bˆ1

À

pPS ιp
ãÑ SL2pFSq.

Let τp, τ̄p be the fixed points of Kˆ
1 acting on Hp.

§ Set D “
Â

pPSpτp ´ τ̄pq P Z0pHSq.

Define Θψ “ r∆ψ bDs P HnpΓS ,Z0pHSqq.
Ideally, we’d like to define a class attached to

â

pPS

τp.
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Conjectures

Granting BSD + parity conjectures, expect ralgpE{Kq ” r pmod 2q.
Fix embeddings ιp : K ãÑ Kp. Get a regulator map
det : ^r EpKq Ñ ÊpKSq, Q1 ^ ¨ ¨ ¨ ^Qr ÞÑ detpιpipQjqq.

Conjecture 1 (algebraicity)
Suppose that ralgpE{Kq ě r. Then:

Dw P ^rEpKq such that ηTatepJq “ detpwq.
ηTatepJq ‰ 0 ùñ ralgpE{Kq “ r.
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Conjectures (II)

Write T pEq “ tp P S | appEq “ 1u.
Set ρpE,Sq “ ralgpE{F q ` |T pEq|.
Bergunde–Gehrmann construct a p-adic L-function attached to
pE,K, Sq.

§ Interpolates central L-values of twists of by characters ramified at S.
§ Vanishes to order at least rpE,K, Sq “ maxtρpE,Sq, ρpEK , Squ.

Fornea–Gehrmann show that LprpE,K,Sqqp
¨
“ J .

Assume that F “ QpjpEqq.

Conjecture 2 (non-vanishing)

If ralgpE{Kq “ r “ maxtρpE,Sq, ρpEK , Squ, then J ‰ 0.
If ralgpE{Kq ă r, then J ‰ 0 (but don’t know arithmetic meaning).

§ Provided that the order of vanishing of Lp allows for it.
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Numerical evidence
Joint work with Xevi Guitart and Michele Fornea.
We have restricted to F real quadratic of narrow class number one.

§ Therefore take r “ 2.

For β P F , define K “ F p
?
βq.

Case 1
We first consider curves E{F where ralgpE{F q “ 0.
Generically, ralgpE{Kq “ 0 as well.
Expect J to often be nonzero, unrelated to global points.
We have checked that this is the case in the following:

§ F “ Qp
?

13q, E “ 36.1-a2, β “ ´9w ` 8,´12w ` 17.
§ F “ Qp

?
37q, E “ 36.1-a2 , β “ ´4w ` 9.

For the following two curves, we have observed J » 0 for many β.
§ F “ Qp

?
37q, E “36.1-b1.

§ F “ Qp
?

37q, E “36.1-c1.

Due to the fact that ap1pEqap2pEq “ ´1 ùñ extra vanishing of Lp.
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Numerical evidence. Case 2

We consider curves E{F where ralgpE{F q “ 1.
We impose that ap1pEqap2pEq “ 1, so maxtρpE,Sq, ρpEK , Squ ą 2.
Generically, ralgpE{Kq “ 2.
In those cases, J should vanish because of an exceptional zero in
the p-adic L-function.
We have checked that this is the case (up to precision p6) in the
following:

§ F “ Qp
?

13q, E “ 225.1-b2, β “ ´3w ´ 1,´12w ` 17.
§ F “ Qp

?
37q, E “ 63.1-a2, β “ ´4w ` 9.

§ F “ Qp
?

37q, E “ 63.1-b1, β “ ´4w ` 9.
§ F “ Qp

?
37q, E “ 63.2-a1, β “ ´3w ` 5.

§ F “ Qp
?

37q, E “ 63.2-b1, β “ ´3w ` 5.
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Numerical evidence. Case 3

We consider curves E{F where ralgpE{F q “ 1.
We impose that ap1pEqap2pEq “ ´1, so maxtρpE,Sq, ρpEK , Squ “ 2.
Generically, ralgpE{Kq “ 2.
In those cases, J should be nonzero and related to global points.
We have checked that this is the case in the following:

§ F “ Qp
?

13q, E “ 153.2-e2, β “ ´9w ` 8.
§ F “ Qp

?
13q, E “ 207.1-c1, β “ ´9w ´ 4,´9w ` 8.

§ F “ Qp
?

37q, E “ 63.1-d1, β “ ´4w ` 9.
§ F “ Qp

?
37q, E “ 63.2-d1, β “ ´3w ` 5

§ F “ Qp
?

37q, E “ 99.2-c1, β “ ´8w ` 17, ´16w ` 9, ´20w ` 29,
´9w ` 14, ´12w ` 29, ´32w ` 41, ´12w ´ 7, ´35w ` 17.

In one of the examples, we obtain what seems to be zero. We
expect that this is due to the low working precision. . .
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A pretty example

F “ Qp
?

13q, w “ 1`
?

13
2 ,

E{F : y2`xy`y “ x3`wx2`pw ` 1qx`2,
K “ F p

?
βq, with β “ 62´ 21w.

EpKq bQ “ xP,Qy, with
P “ p3´ w, 4´ wq and Q “ p8´ 25

9 w, p
´23
27 w `

17
6 q
?
β ` 25

18w ´
9
2q.

We may compute
logE1

pP1 ´ P̄1q b logE2
pQ2 ´ Q̄2q ´ logE1

pQ1 ´ Q̄1q b logE2
pP2 ´ P̄2q P Qp2 bQp2 .

Projecting Qp2 bQp2 Ñ Qp, get 2 ¨ 32 ` 36 ` 2 ¨ 37 ` 39 `Op310q.
This matches our computation of J “ 2 ¨ 32 ` 36 `Op37q.

1
https://www.lmfdb.org/EllipticCurve/2.2.37.1/63.2/d/1
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Computation of the cohomology class
Assume, for concreteness, that r “ 2.
We start with ϕE P H1pΓ0pp1p2q,Zq.
Shapiro isomorphism yields an isomorphism
H1pΓ0pp1p2q,Zq – H1pΓS , coIndZq.

§ ; rϕ̃Es P H1
pΓS , coIndZq.

§ The exact cocycle representative depends on a choice of coset
representatives for ΓS{Γ0pp1p2q.

Have a long-exact sequence

H1pΓS ,HCpZqq Ñ H1pΓS , coIndZq ν
Ñ

à

pPS

H1pΓS ,MapspVpTpqˆEpTSpq,Zqq

ϕE is p-new ; rΦEs P H1pΓS ,HCpZqq lifting rϕ̃Es.
When r “ 1, one can choose appropriate coset representatives
(called radial), which ensure that ΦE “ ϕ̃E .
We don’t know whether there are coset representatives that allow for
that in our setting.
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Lifting to H1
pΓS,HCpZqq

We know that Dφ : EpTSq Ñ Z such that ϕ̃E ´ Bφ P Z1pΓS ,HCpZqq.
First, compute νpϕ̃Eq “ Bpf1, f2q,

f1 : VpTp1q ˆ EpTp2q Ñ Z, f2 : EpTp1q ˆ VpTp2q Ñ Z.

For each pv, eq P VpTp1q ˆ EpTp2q, pick γ P ΓS such that
γpv, eq “ pv0, e˚q, with v0 P tv˚, v̂˚u.

f1pv, eq ´ f1pv0, e˚q “ ν1pϕ̃Epγqqpv0, e˚q.

Analogously, f2pe, vq ´ f2pe˚, v0q “ ν2pϕ̃Epγqqpe˚, v0q.
Hence the four values f1pv˚, e˚q, f1pv̂˚, e˚q, f2pv˚, e˚q, f2pv̂˚, e˚q
determine all the remaining ones.
Knowing the functions f1 and f2 to some fixed radius allows to find φ
such that νpφq “ pf1, f2q, by solving a linear system of equations.
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Linear algebra

To compute φ we need to solve a system of:
§ 2 pp`1qppd´1q

p´1
pd`pd´1

´2
p´2 “ Opp2d´1q equations, in

§
pp`1q2ppd´1q2

pp´1q2 “ Opp2dq unknowns.

p “ 3, d “ 7: get 12, 740, 008 equations in 19, 114, 384 unknowns.
Luckily, it’s sparse: only p` 1 unknowns involved in each equation.
We implemented a custom row reduction, avoiding division and
choosing pivots that maintain sparsity.
Takes „ 60 hours using 16 CPUs to compute f1 and f2.
Solve the system in „ 2 hours (non-parallel), using „ 300GB RAM.
Integration takes „ 10 hours using 64 CPUs.
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Further work

So far we can compute invariants attached to differences τp ´ τ̄p.
§ Fornea–Gehrmann: refined invariants attached to τp, more akin to

Darmon points. Effective computation?
The Riemann sums algorithm runs in exponential time in the
precision.

§ Need an overconvergent method to compute the invariants in
polynomial time.

More experiments are needed in other settings (imaginary quadratic,
mixed signature).
To compute plectic Heegner points, need fundamental domains for
Bruhat–Tits trees acted on by groups attached to totally definite
quaternion algebras (work in progress).
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Merci !
http://www.mat.uab.cat/˜masdeu/
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