
SQISIGN 
COMPACT POST-QUANTUM SIGNATURE 

FROM QUATERNIONS AND ISOGENIES

LFANT seminar 
November 2021 

IMB, Bordeaux, France
Based on a joint work with  

Luca De Feo, David Kohel,  
Antonin Leroux and  

Christophe Petit

Benjamin Wesolowski



SQISIGN
A post-quantum  
signature scheme



THE STATE OF POST-QUANTUM CRYPTOGRAPHY

Lattices 4 encryption 2 signature

Codes 3 encryption

Multivariate 2 signature

Isogenies 1 encryption compact keys poor efficiency

Hash-based 1 signature

MPC 1 signature

3

Six families in Round 3 NIST post-quantum competition (finalists 
+ alternate candidates)



THE STATE OF POST-QUANTUM CRYPTOGRAPHY

Lattices 4 encryption 2 signature

Codes 3 encryption

Multivariate 2 signature

Isogenies 1 encryption compact keys poor efficiency

Hash-based 1 signature

MPC 1 signature

3

Six families in Round 3 NIST post-quantum competition (finalists 
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Many new isogeny-base schemes since the competition
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Based on Iterations Sig. size Efficiency

[Yoo+17] SIDH 
assumptions λ O(λ2) slow

[GPS17] 
GPS

endomorphism 
computation λ O(λ2) no. implem. weaker 

assumptions
[DG19] 
SeaSign

CSIDH 
assumption λ tradeoff very slow

[BKV19] 
CSI-FiSh

CSIDH 
assumption λ tradeoff efficient subexp. 

precomp.

4

Generic isogeny feature: compact keys (unless tradeoff)

λ is the security parameter
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Signature from one round, high soundness identification protocol 
based on proof of knowledge of endomorphism ring

Most compact PQ signature scheme: PK + Signature combined 
5× smaller than Falcon (most compact NIST Round 3)

Efficient verification and reasonably efficient signature
Key gen. Signing Verification

ms 575 2279 42

New security assumption



SUPERSINGULAR 
ELLIPTIC CURVES

Isogenies, endomorphisms  
and quaternions
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Elliptic curve over 𝔽q: solutions (x,y) in 𝔽q of

y 
2 = x 

3 + ax + b 

E(𝔽q) is an additive group

An isogeny in a map

𝜑 : E ⟶ F

which preserves certain structures. In particular, it is a group 
homomorphism with a finite kernel ker(𝜑)

The degree* is deg(𝜑) = # ker(𝜑)

* for separable isogenies
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An endomorphism is an isogeny 𝜑 : E ⟶ E

They form a ring End(E )
‣ 𝜑 + 𝜓 is pointwise addition: (𝜑 + 𝜓)(P) = 𝜑(P) + 𝜓(P) 

‣ 𝜑𝜓 is the composition: (𝜑𝜓)(P) = 𝜑(𝜓(P))

Multiplication by m ∈ ℤ is an endomorphism

[m] : E ⟶ E : P ⟼ P + … + P  

It forms a subring ℤ ⊂ End(E )
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What is the structure of End(E ) ?
‣ It contains ℤ ⊂ End(E )…

‣ (End(E ), +) is a lattice of dimension 2 or 4 

We say E is supersingular when End(E ) has dimension 4

Then, there is a ℤ-basis 1, 𝛼2, 𝛼3, 𝛼4: as a lattice,

End(E ) = ℤ ⊕ ℤ𝛼2 ⊕ ℤ𝛼3 ⊕ ℤ𝛼4

The endomorphism algebra is the vector space

B = ℚ ⊕ ℚ𝛼2 ⊕ ℚ𝛼3 ⊕ ℚ𝛼4

with a ring structure induced from that of End(E )
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Given a supersingular elliptic curve over 𝔽q (of characteristic p), it 
is easy to compute the endomorphism algebra: it is the quaternion 
algebra Bp,∞ 

For instance, if p ≡ 3 (mod 4),

Bp,∞ = ℚ ⊕ ℚi ⊕ ℚj ⊕ ℚk

where i 
2 = –1, j 

2 = –p, and k = ij = –ji 

End(E ) is a discrete subrings of Bp,∞ 
‣ End(E ) is a maximal order in Bp,∞ 
‣ There are many maximal orders in Bp,∞ 
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Supersingular curves E over 𝔽p2  
(up to isomorphism)

Maximal orders in Bp,∞  
 𝓞 ≃ End(E ) 

(up to equivalence)

Isogenies 𝜑 : E ⟶ F Left 𝓞-ideals I𝜑 

Degree deg(𝜑) Norm n(I𝜑)
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Example: p ≡ 3 (mod 4), so 𝔽p2 = 𝔽p(𝛼) where 𝛼2 = –1, and

Bp,∞ = ℚ ⊕ ℚi ⊕ ℚj ⊕ ℚk

where i 
2 = –1, j 

2 = –p, and k = ij = -ji 

Consider E0 : y 
2 = x 

3 + x

Two non-trivial endomorphisms:

‣ 𝜋 : E0 ⟶ E0 : (x, y) ⟼ (x 
p, y 

p)

‣ 𝜄 : E0 ⟶ E0 : (x, y) ⟼ (–x, 𝛼y)

𝜋2 = [–p]
𝜄2 = [–1]

and 𝜄𝜋 = –𝜋𝜄

≃ ℤ ⊕ ℤi ⊕ ℤj ⊕ ℤij ⊂ Bp,∞ 
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For E0 : y 
2 = x 

3 + x, it is easy to compute End(E0)
‣ It is an exception 

In general:
‣ It is hard to compute End(E )
‣ It is hard to find any element of End(E ) not in ℤ

Trapdoor:

‣ Given 𝜑 : E0 ⟶ E, easy to compute End(E ) 
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‣ Hard, unless given 𝜑 : E0 ⟶ E, where End(E0) is known

The Endomorphism 
Ring Problem

Given a supersingular E, 
compute End(E)

Given a supersingular E, find a non-trivial endomorphism
⇔

heuristic



AN IDENTIFICATION 
PROTOCOL

Proving knowledge of an 
endomorphism ring
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PROVING KNOWLEDGE OF END(E)

17

Let E0 : y 
2 = x 

3 + x 

‣ Generate a random secret 𝜑 : E0 ⟶ EA, make EA public
‣ Can compute (secretly) End(EA)
‣ Can one prove knowledge of End(EA)?

Idea first exploited in GPS Signatures in 2017



18

The isogeny path 
problem

Given two supersingular E and F,  
compute an isogeny 𝜑 : E ⟶ F



18

‣ Hard, unless both End(E ) and End(F ) are known

The isogeny path 
problem

Given two supersingular E and F,  
compute an isogeny 𝜑 : E ⟶ F



18

‣ Hard, unless both End(E ) and End(F ) are known
‣ Prove knowledge of End(E ) by solving such instances?

The isogeny path 
problem

Given two supersingular E and F,  
compute an isogeny 𝜑 : E ⟶ F
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Let E0 : y 
2 = x 

3 + x  

‣ Generate a random secret 𝜏 : E0 ⟶ EA, make EA public 
‣ Can compute (secretly) End(EA) 
‣ Can one prove knowledge of End(EA)?

EAE0
key 𝜏

E1

commitment 𝜓

E2

challenge 𝜑

response 𝜎

End(EA) ✔

End(E1) ✔ End(E2) ✔

SQISign

End(E0) ✔
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EAE0

E1 E2

key 𝜏

commitment 𝜓 challenge 𝜑

response 𝜎

challenge 𝜑’

response 𝜎’

A non-trivial 
endomorphism of EA 

solving 
“Endo ring problem”⇒Breaking soundness solving “Non-trivial 

endomorphism”⇒
heuristic

Special soundness: responding to two distinct challenges (for same 
commitment) allows to recover the secret
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EAE0

E1 E2

key 𝜏

commitment 𝜓 challenge 𝜑

response 𝜎

SQISign

What not to do:

‣ Respond 𝜎 = 𝜑 ○ 𝜏 ○ 𝜓 : E1 ⟶ E2 ^
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‣ It works, but leaks secret 𝜏 : E0 ⟶ EA 

^
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Does any information about End(EA) leak?
It depends on how 𝜎 is computed…

EAE0

E1 E2

key 𝜏

commitment 𝜓 challenge 𝜑

response 𝜎

SQISign

What not to do:

‣ Respond 𝜎 = 𝜑 ○ 𝜏 ○ 𝜓 : E1 ⟶ E2 

‣ It works, but leaks secret 𝜏 : E0 ⟶ EA 

^

Solution: new algorithm to compute response 𝜎 independent from 
the secret (based on new computational assumption)

21
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ZERO-KNOWLEDGE?

Solution: new algorithm to compute response 𝜎 independent from 
the secret (based on new computational assumption)

Main technical difficulty of SQISign

22



SQISIGN IN 
PRACTICE

How to make it fast



VERIFICATION

24

EAE0

E1 E2

key 𝜏

commitment 𝜓 challenge 𝜑

response 𝜎

SQISign



VERIFICATION

24

EAE0

E1 E2

key 𝜏

commitment 𝜓 challenge 𝜑

response 𝜎

SQISign

To verify, one has to



VERIFICATION

24

EAE0

E1 E2

key 𝜏

commitment 𝜓 challenge 𝜑

response 𝜎

SQISign

To verify, one has to
‣ Evaluate 𝜎 and 𝜑 



VERIFICATION

24

EAE0

E1 E2

key 𝜏

commitment 𝜓 challenge 𝜑

response 𝜎

SQISign

To verify, one has to
‣ Evaluate 𝜎 and 𝜑 
‣ Check that they have the correct domain and codomain



VERIFICATION

24

EAE0

E1 E2

key 𝜏

commitment 𝜓 challenge 𝜑

response 𝜎

SQISign

To verify, one has to
‣ Evaluate 𝜎 and 𝜑 
‣ Check that they have the correct domain and codomain

Efficient verification! (choosing deg(𝜎) and deg(𝜑) smooth)
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SIGNING
To sign, one has to solve an isogeny path problem:

‣ Given End(E1) and End(E2), find 𝜑 : E1 ⟶ E2 

Asymptotically efficient algorithm, using a variety of other 
algorithms translating between ideals and isogenies (Deuring 
correspondence)

In practice, they can by very inefficient, using prohibitively large 
field extensions

Solution: new algorithmic tools, and a careful choice of the base 
prime p, so extensions are not necessary

25
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CHOICE OF THE PRIME P
Bottleneck of signing: evaluating isogenies of degree T, where
‣ 2eT divides p 

2 – 1 = (p – 1)(p + 1)
‣ T ～ p 

3/2 
‣ T is as smooth as possible (for efficiency!)

How to find a good p ?
‣ Generate a random smooth integer N
‣ Check if 2eN – 1 is prime. Then let p = 2eN – 1
‣ p + 1 is smooth!
‣ Pray that p – 1 has a large smooth divisor

Use Chinese Remainder Theorem to enlarge search space
26
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CHOICE OF THE PRIME P
Bottleneck of signing: evaluating isogenies of degree T, where
‣ 2eT divides p 

2 – 1 = (p – 1)(p + 1)
‣ T ～ p 

3/2 
‣ T is as smooth as possible (for efficiency!)

For 128-bit security (NIST’s level 1), p ～ 2256 

We found a prime p such that e = 33, and

27

T = 353 ･ 43 ･ 1032 ･ 109 ･ 199 ･ 227 ･ 419 ･ 
491 ･ 569 ･ 631 ･ 677 ･ 857 ･ 859 ･ 883 ･ 1019 ･ 
1171 ･ 1879 ･ 2713 ･ 4283 ･ 521 ･ 72 ･ 11 ･ 31 ･ 
83 ･ 107 ･ 137 ･ 751 ･ 827 ･ 3691 ･ 4019 ･ 6983
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