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Yet another slide on Svp

Definition (Lattice)

A lattice L is a discrete subgroup of Rn (say a “Z-vector space”).

Example:

(
1 2
3 −1

)
and

(
13 5
17 6

)
are two possible bases.

Shortest Vector Problem (SVP)

Given a basis of L, find the shortest v ∈ L:
‖v‖2 = λ1(L).

Structured variants: Ideal, Module

I Is the algebraic structure harmful for cryptography ? (rely on Module-Svp)
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Algebraic cryptanalysis of Ideal-Svp

Quantum computer: computes units, class groups, S-units in poly time !
Picture for Ideal-Svp: in cyclotomic fields Km = Q(ζm),m 6≡ 2 mod 4.
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1 Schnorr’s hierarchy (unstructured case)

2 CDW algorithm [CDW21]: uses short Stickelberger relations.

3 PHS and Twisted-PHS [PHS19,BR20]: use S-units.

I How “devastating (!?)” would be so-called S-unit attacks in practice ?
(Given a quantum computer, say)
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eÕ(n)

Precomp.

C
r
y
p
t
o
g
r
a
p
h
y

C
r
y
p
t
o
g
r
a
p
h
y

Approximation
Factor

Time

Quantum

Classical

BK
Z

1 Schnorr’s hierarchy (unstructured case)

2 CDW algorithm [CDW21]: uses short Stickelberger relations.

3 PHS and Twisted-PHS [PHS19,BR20]: use S-units.

I How “devastating (!?)” would be so-called S-unit attacks in practice ?
(Given a quantum computer, say)

O. Bernard & al. Explicit Stickelberger Generators LFANT’s Seminar, Bordeaux 5 / 26



Motivations S-unit attacks A full-rank family of independent S-units Experimental results What’s next ?

Algebraic cryptanalysis of Ideal-Svp

Quantum computer: computes units, class groups, S-units in poly time !
Picture for Ideal-Svp: in cyclotomic fields Km = Q(ζm),m 6≡ 2 mod 4.

poly
poly

eÕ(
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eÕ(
√

n)
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Pip and Sgp vs. Cldl and S-Cldl: towards id-Svp

Let K be a number field, b any fractional ideal.
S = S∞ ∪

{
p1, . . . , pk

}
a factor base of prime ideals.

Principal Ideal Problem (Pip)

Given b, find (if it exists) g st. 〈g〉 = b.

Shortest Generator Problem (Sgp)

Given b = 〈g〉, find the shortest g0 st. b = 〈g0〉.

I Use units.

O. Bernard & al. Explicit Stickelberger Generators LFANT’s Seminar, Bordeaux 7 / 26
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Let K be a number field, b any fractional ideal.
S = S∞ ∪

{
p1, . . . , pk

}
a factor base of prime ideals.

Class Group Discrete Logarithm (Cldl) Problem

Given b, find (if it exists) α, vi ∈ Z such that: 〈α〉 = b ·
∏

pi∈S
pvii .

Shortest Class Group Discrete Logarithm Problem (S-Cldl)

From a Cldl solution, find the shortest α0 such that:

〈α0〉 = b ·
∏
p∈S

pvii , vi ∈ Z+.

I Use S-units.
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The log-unit lattice

Let K be a number field of degree n,
S∞ = {σ : K ↪→ C} its embeddings into C.

Algebraic unit

An algebraic integer u ∈ OK is a unit iff:

1 = |N (u)|
(

=
∏
σ∈S∞

|σ(u)|
)
.

Logarithmic embedding

LogS∞ : α ∈ K 7−→
(

ln|σ(α)|
)
σ∈S∞

∈ Rn.

Hence:

u is a unit ⇐⇒ LogS∞(u) ∈ 1⊥.

Their images form the log-unit lattice: ΛK ( 1⊥.
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Folklore: generator reduction

Let b a principal ideal challenge, given as 〈g0〉 = b.

Shortest generator: g = u−1 · g0,
LogS∞ g ∈ LogS∞ g0 + ΛK .

1 Project LogS∞ g0 into R⊗ ΛK .

2 Find the closest LogS∞ u ∈ ΛK .

3 Output g0/u.

1

R⊗ ΛK

I [CDPR16] Cyclotomic case: we know a good basis of ΛK .

Quantum polynomial time, approximation factor generically 2Õ(
√
n).

O. Bernard & al. Explicit Stickelberger Generators LFANT’s Seminar, Bordeaux 9 / 26



Motivations S-unit attacks A full-rank family of independent S-units Experimental results What’s next ?

Folklore: generator reduction

Let b a principal ideal challenge, given as 〈g0〉 = b.

Shortest generator: g = u−1 · g0,
LogS∞ g ∈ LogS∞ g0 + ΛK .

1 Project LogS∞ g0 into R⊗ ΛK .

2 Find the closest LogS∞ u ∈ ΛK .

3 Output g0/u.

1

R⊗ ΛK

LogS∞
g0

I [CDPR16] Cyclotomic case: we know a good basis of ΛK .

Quantum polynomial time, approximation factor generically 2Õ(
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The log-S-unit lattice

Let S = S∞ ∪
{
p1, . . . , pk

}
a factor base containing k prime ideals.

S-unit

An algebraic S-integer u ∈ OK ,S is a S-unit iff:

1 =
∏
σ∈S∞

|σ(s)| ·
∏

p∈S N (p)−vp(s).

Logarithmic S-embedding (“twisted” representation)

LogS(α) =
({

ln|σ(α)|
}
σ∈S∞

,
{
−vp(α) · lnN (p)

}
p∈S

)
.

Hence:

s is a S-unit ⇐⇒ LogS(s) ∈ 1⊥.

Their images form the log-S-unit lattice: ΛK ,S ( 1⊥ in Rn+k .

O. Bernard & al. Explicit Stickelberger Generators LFANT’s Seminar, Bordeaux 10 / 26
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Cldl reduction algorithm (Twisted-PHS)

Let b any ideal challenge, as 〈α0〉 = b ·
∏

p∈S p
vp . (ClDL solution)

Shortest ClDL: α = s−1 · α0,
LogS α ∈ LogS α0 + ΛK ,S .

1 Project LogS α0 into 1⊥.

2 Find closest LogS s ∈ ΛK ,S .

3 Output α0/s.

1

R⊗ ΛK,S

I For Ideal-Svp, must guarantee vp(α) ≥ 0: drift projection in 1⊥.
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Impacts of the chosen logarithmic S-embedding

Logarithmic S-embedding (“twisted” representation)

LogS(α) =
({

ln|σ(α)|
}
σ∈S∞

,
{
−vp(α) · lnN (p)

}
p∈S

)
.

I What is the impact of these lnN (p) ?

Theoretically: seems not to change much (same proven bounds)

1 Better chosen S-unit combination: involving big ideals costs more.

2 Optimal factor base phenomenon: some S maximizes the density !

In practice: (small dimensions)

1 much better geometric indicators

2 very small approximation factors
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Weights: a graphical praise

K = Q(ζ59),
S = {p | 709, 827}
Log-S-unit
Gram-Schmidt log norms

Fields Q(ζp), p ≤ 53

Exact approx factors

I Are these only a “small dimension effect” ?
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Today’s à la carte

1 Motivations

2 S-unit attacks

3 A full-rank family of independent S-units

4 Experimental results

5 What’s next ?
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A quick summary

Let Km = Q(ζm), m 6≡ 2 mod 4, n = degKm

S = S∞ ∪ {Li | `i · OK ; `i ≡ 1 mod m, i ∈ J1, dK} a set of places.

1 Circular units

2 Explicit Stickelberger generators

3 Real S+-units (that are not units) in K+
m

Theorem (suppose for the presentation that all Li generate the class group)

These form a maximal set of independent S-units, generating a subgroup
(modulo torsion) of index:

h+
m · (h−m )d−1 · 2b ·

(
2

ϕ(m)
2
−1 · 2a)d , for explicitly defined a, b.

I Obtain a full-rank log-S-unit sub-lattice in dim n from S+-units in dim n/2.
This is how we breach the n ≤ 80 barrier to reach n = 210 !
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Circular units

Let Km = Q(ζm),m 6≡ 2 mod 4.

Definition (Circular units)

Let Vm generated by
{

1− ζam; 1 ≤ a ≤ m
}

. The group of circular units is

Cm := Vm ∩ O×Km
.

For any m, we know:

an explicit system of fundamental circular units,

a basis of the log-unit sublattice of circular units, moreover ([CDW21]):

‖LogS∞(1− ζam)‖2 ≤ 1.32
√
m.

an explicit formula for the index
[
O×Km

: Cm

]
([Sin80])
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Stickelberger ideal

Let Km = Q(ζm), m 6≡ 2 mod 4,
Gm = Gal(Km/Q) =

{
σs : ζm 7→ ζsm; (s,m) = 1

}
.

Definition (Stickelberger ideal)

Let S ′m be generated by {θm(a); 0 < a < m} ∪ { 1
2
Nm}, for:

θm(a) =
∑

s∈(Z/mZ)×

{
−as

m

}
· σ−1

s ∈ Q
[
Gm

]
,

and Nm =
∑
σ∈Gm

σ. The Stickelberger ideal is Sm = S ′m ∩ Z[Gm].

Don’t look too hard at the definition.

The Stickelberger ideal gives free relations in ClKm .

The proof is explicit !

O. Bernard & al. Explicit Stickelberger Generators LFANT’s Seminar, Bordeaux 17 / 26
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Explicit Stickelberger generators

Let L | ` be a split prime ideal, and let βθm(−1) ∈ Sm.

There is an explicit γ ∈ Km st. 〈γ〉 = Lβθm(−1):

χL : a ∈ OK/L 7−→ ζkm ≡ a(`−1)/m mod L, (`-th power Legendre symbol)

g(χL) = −
∑

a∈F∗
`
χL(a) · ζa` ∈ Q[ζm`], (Gauss sum)

〈g(χL)β〉 = Lβθm(−1). (Stickelberger factorization)

Problems:

1 Compute in Q[ζm`] ?

2 Coefficients grow FAST

3 We will need to 2-saturate these, so we have to start as low as possible.

O. Bernard & al. Explicit Stickelberger Generators LFANT’s Seminar, Bordeaux 18 / 26
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Short Stickelberger relations

Short: β =
∑
σ εσσ ∈ Z[Gm], with εσ ∈ {0, 1}

Theorem (A family of short Stickelberger elements [BK21, Pr.3.1])

Let a, b st. m - a, m - b, m - (a + b). Then:

θa,b = θm(a) + θm(b)− θm(a + b)

is short; moreover ‖θa,b‖2 =
√
ϕ(m)/2.

Express corresponding generators by Jacobi sums: (〈JL(a, b)〉 = Lθa,b )

JL(a, b) = −
∑

u∈OKm/L

χa
L(u)χb

L(1−u) ∈ Q[ζm]. [BK21, §5]

From these we can even extract a short basis for any m. ([BK21, Th.3.6])
⇒ Coefficients on Z[ζm] stay (much much) lower, no denominators.

This is especially crucial for the 2-saturation step in big dimensions !

The proof gives an algorithm to compute h−m . (a determinant computation)
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Short Stickelberger relations

Short: β =
∑
σ εσσ ∈ Z[Gm], with εσ ∈ {0, 1}

Theorem (A family of short Stickelberger elements [BK21, Pr.3.1])

Let a, b st. m - a, m - b, m - (a + b). Then:
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is short; moreover ‖θa,b‖2 =
√
ϕ(m)/2.

Express corresponding generators by Jacobi sums: (〈JL(a, b)〉 = Lθa,b )
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Today’s à la carte

1 Motivations

2 S-unit attacks

3 A full-rank family of independent S-units

4 Experimental results

5 What’s next ?
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What do we want ?

Breach the small dimension barrier for S-unit attacks:

1 Geometric characteristics of log-S-unit (sub)lattices

2 Better Approx Factors than predicted by theory ? Also in higher regimes ?

3 We only have a picture for degree ≤ 70 for (1), degree ≤ 52 for (2)

I Necessary to gather more experimental observations before predicting things

Climbing degrees is classically HARD !!
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What do we have ?

Let Km = Q(ζm),m 6≡ 2 mod 4
S = S∞ ∪ {Li | `i · OK ; `i ≡ 1 mod m, i ∈ J1, dK} a set of places.

Compute:

1 Circular units

2 S+-units (of norm > 1)

3 Stickelberger generators JL(a, b) of a basis of θa,b’s of Sm
4 2-saturation of these to remove the 2HUGE in the index in O×Km,S

I Obtain “Twisted-PHS like” log-S-unit sub-lattices, for degQ(ζm) ≤ 210.
Remaining index: ≈ (h−m )d−1

I This is only a degraded mode of Twisted-PHS, for example in Q(ζ211):

min Vol1/ dim Lsat = 11.39, reached for d = 1

min Vol1/ dim Lsu = 9.6, reached for dmax = 7 (uncomputable)
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Geometric characteristics

Example: Q(ζ564) for d = 2 split orbits in S,
Gram-Schmidt log norms for 2-saturated family of S-units.

Same shape: (same geometric observations than in Twisted-PHS)

across all cyclotomic fields of degree ≤ 210 (even in largest dimensions)

for all choices of factor base S, any sublattice (saturated or not)

I This is a very general geometric phenomenon
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Approximation factor upper bound

Upper bounds the performance of S-unit attacks beyond degree 100

Shows no catastrophic impact of S-unit attacks, neither reassuring

Strong connection between AF and Vol1/ dim

I Opens the way to a high dimension simulator.
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Future work

1 Derive a reliable estimator of Twisted-PHS performances.
Use extended data to reliably support heuristics and estimations.

Explain the strong connection between final AF and Vol1/d L.

2 Obtain full log-S-unit lattices:
for real subfield with h+

m > 1 (just a technical wizardry issue);
for higher degree cyclotomic fields (n ≥ 80) for several Galois orbits;
for other families of number fields (multi-quadratics).

Questions ?
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