Log-S-unit lattices using Explicit Stickelberger Generators to solve Approx Ideal-SVP

Olivier Bernard^{1,2} Andrea Lesavourey¹ Tuong-Huy Nguyen^{1,3} Adeline Roux-Langlois¹

THALES

¹Univ Rennes CNRS IRISA

{olivier.bernard, andrea.lesavourey, tuong-huy.nguyen, adeline.roux-langlois}@irisa.fr

²Thales, Gennevilliers, Laboratoire CHiffre

³DGA Maîtrise de l'Information, Bruz

LFANT's Seminar, Bordeaux

7th December 2021

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
Today's à				

Motivations

S-unit attacks

3 A full-rank family of independent S-units

Experimental results

5 What's next ?

э

イロト イヨト イヨト

Motivations	S-unit attacks	A full-rank family of independent S-units	Experimental results	What's next ?		
000	0000000	000000	00000	00		
Today's à la carte						

Motivations

2 S-unit attacks

3 A full-rank family of independent S-units

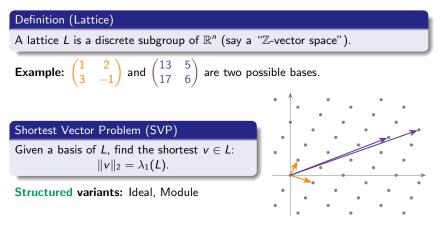
Experimental results

5 What's next ?

2

< □ > < □ > < □ > < □ > < □ >

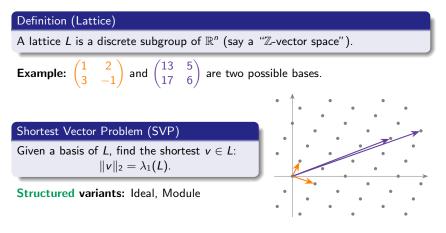
Motivations	\mathcal{S} -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?			
000	0000000	000000	00000	00			
Yet another slide on SvP							



▶ Is the algebraic structure harmful for cryptography ? (rely on Module-SvP)

イロト イヨト イヨト イ

Motivations	$\mathcal S$ -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?			
000	0000000	000000	00000	00			
Yet another slide on SvP							

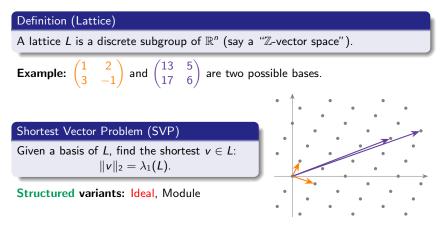


▶ Is the algebraic structure harmful for cryptography ?

(rely on Module-SVP)

• • • • • • • • • • • •

Motivations	$\mathcal S$ -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?			
000	0000000	000000	00000	00			
Yet another slide on SvP							



▶ Is the algebraic structure harmful for cryptography ?

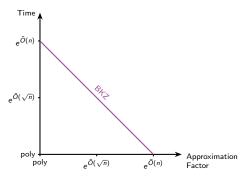
(rely on Module-SVP)

• • • • • • • • • • • •

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	000000	00000	00
		6 • • • • •		

Algebraic cryptanalysis of Ideal-SvP

Quantum computer: computes units, class groups, S-units in poly time ! **Picture for Ideal-Svp:** in cyclotomic fields $K_m = \mathbb{Q}(\zeta_m), m \neq 2 \mod 4$.



Schnorr's hierarchy (unstructured case)

- ODW algorithm [CDW21]: uses short Stickelberger relations.
- ⁽³⁾ PHS and Twisted-PHS [PHS19,BR20]: use S-units.
- ► How "devastating (!?)" would be so-called S-unit attacks in practice ? (Given a quantum computer, say)

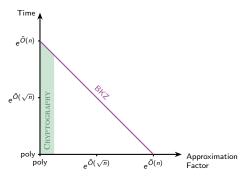
O. BERNARD & al.

Explicit Stickelberger Generators

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	000000	00000	00
		6 • • • • •		

Algebraic cryptanalysis of Ideal-SVP

Quantum computer: computes units, class groups, S-units in poly time ! **Picture for Ideal-Svp:** in cyclotomic fields $K_m = \mathbb{Q}(\zeta_m), m \neq 2 \mod 4$.



Schnorr's hierarchy (unstructured case)

- ODW algorithm [CDW21]: uses short Stickelberger relations.
- O PHS and Twisted-PHS [PHS19,BR20]: use S-units.
- ► How "devastating (!?)" would be so-called S-unit attacks in practice ? (Given a quantum computer, say)

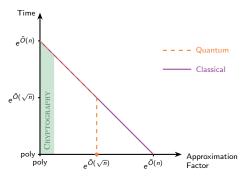
O. BERNARD & al.

Explicit Stickelberger Generators

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
		611 1 G		

Algebraic cryptanalysis of Ideal-SvP

Quantum computer: computes units, class groups, S-units in poly time ! **Picture for Ideal-Svp:** in cyclotomic fields $K_m = \mathbb{Q}(\zeta_m), m \neq 2 \mod 4$.

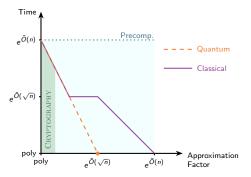


- Schnorr's hierarchy (unstructured case)
- **②** CDW algorithm [CDW21]: uses short Stickelberger relations.
- Operation of the second state of the second
- ► How "devastating (!?)" would be so-called S-unit attacks in practice ? (Given a quantum computer, say)

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	000000	00000	00
		6 • • • • •		

Algebraic cryptanalysis of Ideal-SVP

Quantum computer: computes units, class groups, S-units in poly time ! **Picture for Ideal-Svp:** in cyclotomic fields $K_m = \mathbb{Q}(\zeta_m), m \neq 2 \mod 4$.



- Schnorr's hierarchy (unstructured case)
- **②** CDW algorithm [CDW21]: uses short Stickelberger relations.
- PHS and Twisted-PHS [PHS19,BR20]: use *S*-units.

▶ How "devastating (!?)" would be so-called S-unit attacks in practice ? (Given a quantum computer, say)

O. BERNARD & al.

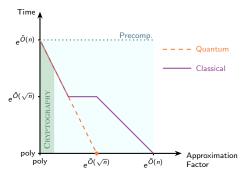
Explicit Stickelberger Generators

< ロ > < 同 > < 回 > < 回 >

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	000000	00000	00
		6 • • • • •		

Algebraic cryptanalysis of Ideal-SVP

Quantum computer: computes units, class groups, S-units in poly time ! **Picture for Ideal-Svp:** in cyclotomic fields $K_m = \mathbb{Q}(\zeta_m), m \neq 2 \mod 4$.



- Schnorr's hierarchy (unstructured case)
- **②** CDW algorithm [CDW21]: uses short Stickelberger relations.
- PHS and Twisted-PHS [PHS19,BR20]: use *S*-units.
- ► How "devastating (!?)" would be so-called S-unit attacks in practice ? (Given a quantum computer, say)

< ロ > < 同 > < 三 > < 三)

Motivations	S-unit attacks	A full-rank family of independent S-units	Experimental results	What's next ?
000	0000000	000000	00000	00
Today's a	à la carte			

Motivations

2 S-unit attacks

3 A full-rank family of independent S-units

Experimental results

5 What's next ?

2

< □ > < □ > < □ > < □ > < □ >

D 1 0				
000	0000000	000000	00000	00
Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?

PIP and SGP vs. CIDL and S-CIDL: towards id-SVP

Let K be a number field, \mathfrak{b} any fractional ideal. $S = S_{\infty} \cup {\mathfrak{p}_1, \ldots, \mathfrak{p}_k}$ a factor base of prime ideals.

Principal Ideal Problem (PIP)

Given **b**, find (if it exists) g st. $\langle g \rangle = \mathfrak{b}$.

Shortest Generator Problem (SGP)

Given $\mathfrak{b} = \langle \mathbf{g} \rangle$, find the shortest g_0 st. $\mathfrak{b} = \langle g_0 \rangle$.

► Use units.

< ロ > < 同 > < 回 > < 回 >

D 1 0				
000	0000000	000000	00000	00
Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?

PIP and SGP vs. CIDL and S-CIDL: towards id-SVP

Let K be a number field, \mathfrak{b} any fractional ideal. $S = S_{\infty} \cup \{\mathfrak{p}_1, \dots, \mathfrak{p}_k\}$ a factor base of prime ideals.

Class Group Discrete Logarithm (CIDL) Problem

Given \mathfrak{b} , find (if it exists) α , $v_i \in \mathbb{Z}$ such that: $\langle \alpha \rangle = \mathfrak{b} \cdot \prod_{\mathfrak{p}_i \in S} \mathfrak{p}_i^{v_i}$.

Shortest Class Group Discrete Logarithm Problem (S-CIDL)

From a ClDL solution, find the shortest α_0 such that:

$$\langle \alpha_0 \rangle = \mathfrak{b} \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}_i^{\mathsf{v}_i}, \quad \mathsf{v}_i \in \mathbb{Z}_+.$$

► Use *S*-units.

< ロ > < 同 > < 三 > < 三)

Motivations	\mathcal{S} -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
The log-ı	unit lattice			

Let K be a number field of degree n, $S_{\infty} = \{ \sigma : K \hookrightarrow \mathbb{C} \}$ its embeddings into \mathbb{C} .

Algebraic unit

An algebraic integer $u \in \mathcal{O}_{\mathcal{K}}$ is a unit iff:

$$1 = |\mathcal{N}(u)| \quad \left(=\prod_{\sigma\in\mathcal{S}_{\infty}}|\sigma(u)|\right).$$

Logarithmic embedding

$$\mathsf{Log}_{\mathcal{S}_{\infty}}: \alpha \in \mathcal{K} \longmapsto \left(\mathsf{ln}|\sigma(\alpha)|\right)_{\sigma \in \mathcal{S}_{\infty}} \qquad \in \mathbb{R}^{n}$$

Hence:

- u is a unit $\iff \text{Log}_{\mathcal{S}_{\infty}}(u) \in \mathbf{1}^{\perp}$.
- Their images form the log-unit lattice: $\Lambda_K \subsetneq \mathbf{1}^{\perp}$.

< □ > < □ > < □ > < □ > < □ >

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
The log-ι	unit lattice			

Let K be a number field of degree n, $S_{\infty} = \{ \sigma : K \hookrightarrow \mathbb{C} \}$ its embeddings into \mathbb{C} .

Algebraic unit

An algebraic integer $u \in \mathcal{O}_K$ is a unit iff:

$$1 = |\mathcal{N}(u)| \quad \Big(= \prod_{\sigma \in \mathcal{S}_{\infty}} |\sigma(u)| \Big).$$

Logarithmic embedding

$$\mathsf{Log}_{\mathcal{S}_{\infty}}: \alpha \in \mathcal{K} \longmapsto \left(\mathsf{ln}|\sigma(\alpha)|\right)_{\sigma \in \mathcal{S}_{\infty}} \qquad \in \mathbb{R}^{n}$$

Hence:

- u is a unit $\iff \text{Log}_{\mathcal{S}_{\infty}}(u) \in \mathbf{1}^{\perp}$.
- Their images form the log-unit lattice: $\Lambda_K \subsetneq \mathbf{1}^{\perp}$.

э

イロト イヨト イヨト

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
The log-ι	unit lattice			

Let K be a number field of degree n, $S_{\infty} = \{ \sigma : K \hookrightarrow \mathbb{C} \}$ its embeddings into \mathbb{C} .

Algebraic unit

An algebraic integer $u \in \mathcal{O}_K$ is a unit iff:

$$1 = |\mathcal{N}(u)| \quad \Big(= \prod_{\sigma \in \mathcal{S}_{\infty}} |\sigma(u)| \Big).$$

Logarithmic embedding

$$\mathsf{Log}_{\mathcal{S}_{\infty}}: \alpha \in \mathcal{K} \longmapsto \Big(\mathsf{ln}|\sigma(\alpha)|\Big)_{\sigma \in \mathcal{S}_{\infty}} \qquad \in \mathbb{R}^{n}$$

Hence:

- u is a unit $\iff Log_{\mathcal{S}_{\infty}}(u) \in \mathbf{1}^{\perp}$.
- Their images form the log-unit lattice: $\Lambda_K \subsetneq \mathbf{1}^{\perp}$.

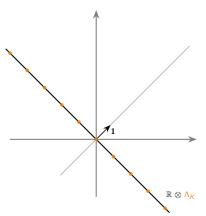
э

イロト イヨト イヨト

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?			
000	0000000	000000	00000	00			
Folklore: generator reduction							

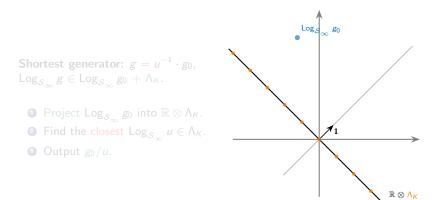
Shortest generator: $g = u^{-1} \cdot g_0$, Log_{S_m} $g \in Log_{S_m} g_0 + \Lambda_K$.

Project Log_{S_∞} g₀ into ℝ ⊗ Λ_K.
 Find the closest Log_{S_∞} u ∈ Λ_K.
 Output g₀/u.



イロト イヨト イヨト イヨト

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
Folklore:	generator red	uction		



< □ > < 同 > < 回 > < 回 >

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	000000	00000	00
Folklore:	generator red	uction		

Shortest generator: $g = u^{-1} \cdot g_0$, $\log_{S_{\infty}} g \in \log_{S_{\infty}} g_0 + \Lambda_K$. Project $\log_{S_{\infty}} g_0$ into $\mathbb{R} \otimes \Lambda_K$. Find the closest $\log_{S_{\infty}} u \in \Lambda_K$. Output g_0/u .

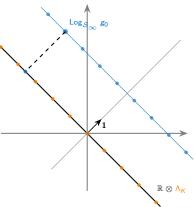
< □ > < 同 > < 回 > < 回 >

 $\mathbb{R}\otimes \Lambda_{K}$

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	000000	00000	00
Folklore:	generator red	uction		

Shortest generator: $g = u^{-1} \cdot g_0$, $\log_{S_{\infty}} g \in \log_{S_{\infty}} g_0 + \Lambda_K$. O Project $\log_{S_{\infty}} g_0$ into $\mathbb{R} \otimes \Lambda_K$. O Find the closest $\log_{S_{\infty}} u \in \Lambda_K$.

Output g_0/u .



Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	000000	00000	00
Folklore:	generator red	uction		

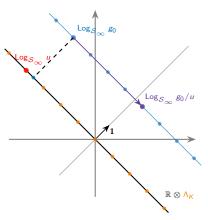
Shortest generator: $g = u^{-1} \cdot g_0$, $\log_{S_{\infty}} g \in \log_{S_{\infty}} g_0 + \Lambda_K$. Project $\log_{S_{\infty}} g_0$ into $\mathbb{R} \otimes \Lambda_K$. Find the closest $\log_{S_{\infty}} u \in \Lambda_K$. Output g_0/u .

 $\mathbb{R}\otimes \Lambda_{K}$

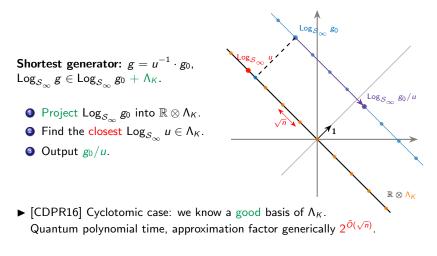
Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	000000	00000	00
Folklore:	generator red	uction		

Shortest generator: $g = u^{-1} \cdot g_0$, $\log_{\mathcal{S}_{\infty}} g \in \log_{\mathcal{S}_{\infty}} g_0 + \Lambda_{\mathcal{K}}$. Project $\log_{\mathcal{S}_{\infty}} g_0$ into $\mathbb{R} \otimes \Lambda_{\mathcal{K}}$.

- **2** Find the closest $\text{Log}_{S_{\infty}} u \in \Lambda_{K}$.
- Output g_0/u .



Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?				
000	0000000	000000	00000	00				
Folklore:	Folklore: generator reduction							



Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	000000	00000	00
The log-a	S-unit lattice			

Let $S = S_{\infty} \cup \{p_1, \dots, p_k\}$ a factor base containing k prime ideals.

S-unit
An algebraic S-integer
$$u \in \mathcal{O}_{K,S}$$
 is a S-unit iff:
$$1 = \prod_{\sigma \in S_{\infty}} |\sigma(s)| \cdot \prod_{\mathfrak{p} \in S} \mathcal{N}(\mathfrak{p})^{-\nu_{\mathfrak{p}}(s)}.$$

Logarithmic \mathcal{S} -embedding ("twisted" representation)

$$\mathsf{Log}_{\mathcal{S}}(\alpha) = \Big(\{ \mathsf{ln} | \sigma(\alpha) | \}_{\sigma \in \mathcal{S}_{\infty}}, \{ -v_{\mathfrak{p}}(\alpha) \cdot \mathsf{ln} \, \mathcal{N}(\mathfrak{p}) \}_{\mathfrak{p} \in \mathcal{S}} \Big).$$

Hence:

- s is a S-unit $\iff \text{Log}_{S}(s) \in 1^{\perp}$.
- Their images form the log-S-unit lattice: $\Lambda_{K,S} \subsetneq \mathbf{1}^{\perp}$ in \mathbb{R}^{n+k} .

э

< □ > < □ > < □ > < □ > < □ >

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	000000	00000	00
The log-a	S-unit lattice			

Let $S = S_{\infty} \cup \{p_1, \dots, p_k\}$ a factor base containing k prime ideals.

$$\begin{split} \mathcal{S}\text{-unit} \\ \text{An algebraic } \mathcal{S}\text{-integer } u \in \mathcal{O}_{\mathcal{K},\mathcal{S}} \text{ is a } \mathcal{S}\text{-unit iff:} \\ 1 &= \prod_{\sigma \in \mathcal{S}_{\infty}} |\sigma(s)| \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathcal{N}(\mathfrak{p})^{-v_{\mathfrak{p}}(s)}. \end{split}$$

Logarithmic S-embedding ("twisted" representation)

$$\mathsf{Log}_{\mathcal{S}}(\alpha) = \Big(\big\{ \mathsf{ln}|\sigma(\alpha)| \big\}_{\sigma \in \mathcal{S}_{\infty}}, \big\{ -v_{\mathfrak{p}}(\alpha) \cdot \mathsf{ln} \, \mathcal{N}(\mathfrak{p}) \big\}_{\mathfrak{p} \in \mathcal{S}} \Big).$$

Hence:

• s is a S-unit $\iff \text{Log}_{S}(s) \in 1^{\perp}$.

• Their images form the log-*S*-unit lattice: $\Lambda_{K,S} \subsetneq \mathbf{1}^{\perp}$ in \mathbb{R}^{n+k} .

- 34

< □ > < □ > < □ > < □ > < □ >

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	000000	00000	00
The log-a	S-unit lattice			

Let $S = S_{\infty} \cup \{p_1, \dots, p_k\}$ a factor base containing k prime ideals.

$$\begin{split} \mathcal{S}\text{-unit} \\ \text{An algebraic } \mathcal{S}\text{-integer } u \in \mathcal{O}_{\mathcal{K},\mathcal{S}} \text{ is a } \mathcal{S}\text{-unit iff:} \\ 1 &= \prod_{\sigma \in \mathcal{S}_{\infty}} |\sigma(s)| \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathcal{N}(\mathfrak{p})^{-v_{\mathfrak{p}}(s)}. \end{split}$$

Logarithmic S-embedding ("twisted" representation)

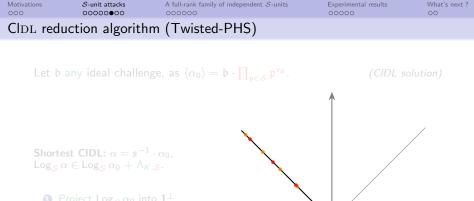
$$\mathsf{Log}_{\mathcal{S}}(\alpha) = \Big(\big\{ \mathsf{ln}|\sigma(\alpha)| \big\}_{\sigma \in \mathcal{S}_{\infty}}, \big\{ -\mathsf{v}_{\mathfrak{p}}(\alpha) \cdot \mathsf{ln} \, \mathcal{N}(\mathfrak{p}) \big\}_{\mathfrak{p} \in \mathcal{S}} \Big).$$

Hence:

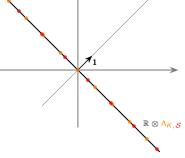
- s is a S-unit $\iff \text{Log}_{\mathcal{S}}(s) \in \mathbf{1}^{\perp}$.
- Their images form the log-*S*-unit lattice: $\Lambda_{K,S} \subsetneq \mathbf{1}^{\perp}$ in \mathbb{R}^{n+k} .

- -

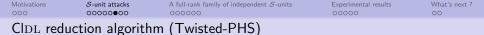
イロト イボト イヨト イヨト

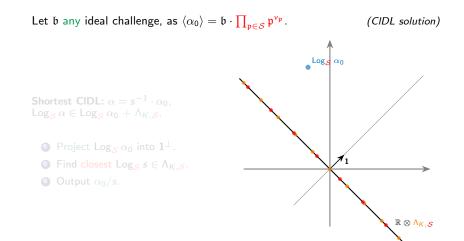


- (2) Find closest $\text{Log}_{S} s \in \Lambda_{K,S}$.
- Output α_0/s .



<ロト < 回 > < 回 > < 回 > < 回 >





Let \mathfrak{b} any ideal challenge, as $\langle \alpha_0 \rangle = \mathfrak{b} \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{v_{\mathfrak{p}}}$. (CIDL solution) $\log_{\mathcal{S}} \alpha_0$ Shortest CIDL: $\alpha = s^{-1} \cdot \alpha_0$, $\log_{\mathcal{S}} \alpha \in \log_{\mathcal{S}} \alpha_0 + \Lambda_{K,\mathcal{S}}.$ $\mathbb{R}\otimes \Lambda_{K,\mathcal{S}}$

イロト イヨト イヨト

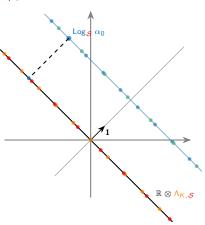
Let \mathfrak{b} any ideal challenge, as $\langle \alpha_0 \rangle = \mathfrak{b} \cdot \prod_{\mathfrak{p} \in S} \mathfrak{p}^{\mathbf{v}_p}$. (CIDL solution)

Shortest CIDL: $\alpha = s^{-1} \cdot \alpha_0$, $\log_{\mathcal{S}} \alpha \in \log_{\mathcal{S}} \alpha_0 + \Lambda_{\mathcal{K},\mathcal{S}}$.

1 Project $\text{Log}_{\mathcal{S}} \alpha_0$ into $\mathbf{1}^{\perp}$.

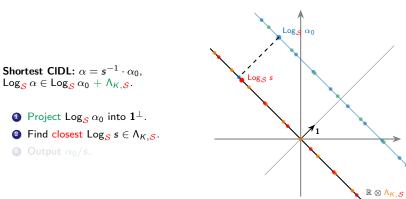
2 Find closest $\text{Log}_{S} s \in \Lambda_{K,S}$.

(a) Output α_0/s .



(IDJ reduction algorithm (Twisted PHS)						
000	00000000	000000	00000	00		
Motivations	\mathcal{S} -unit attacks	A full-rank family of independent S-units	Experimental results	What's next ?		

Let \mathfrak{b} any ideal challenge, as $\langle \alpha_0 \rangle = \mathfrak{b} \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{\nu_{\mathfrak{p}}}$. (CIDL solution)



Explicit Stickelberger Generators

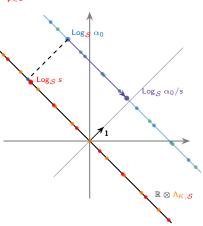
イロト 不得 トイヨト イヨト

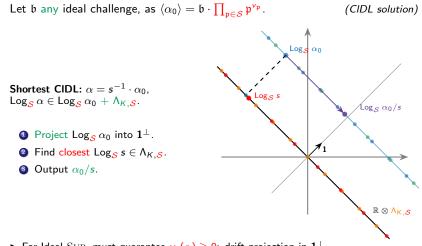
CIDE reduct	ion algorithm	(Twisted DUC)		
000	00000000	000000	00000	00
Motivations	S-unit attacks	A full-rank family of independent S-units	Experimental results	What's next ?

Let \mathfrak{b} any ideal challenge, as $\langle \alpha_0 \rangle = \mathfrak{b} \cdot \prod_{\mathfrak{p} \in S} \mathfrak{p}^{\mathsf{v}_p}$. (CIDL solution)

Shortest CIDL: $\alpha = s^{-1} \cdot \alpha_0$, $\log_{\mathcal{S}} \alpha \in \log_{\mathcal{S}} \alpha_0 + \Lambda_{\mathcal{K},\mathcal{S}}$.

- **1** Project $\text{Log}_{\mathcal{S}} \alpha_0$ into $\mathbf{1}^{\perp}$.
- **2** Find closest $\text{Log}_{S} s \in \Lambda_{K,S}$.
- \bigcirc Output α_0/s .





► For Ideal-SVP, must guarantee $v_p(\alpha) \ge 0$: drift projection in 1^{\perp} .

イロト イヨト イヨト

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	000000	00000	00
Impacts	of the chosen	logarithmic S -embedding		

Logarithmic S-embedding ("twisted" representation)

$$\mathsf{Log}_{\mathcal{S}}(\alpha) = \Big(\big\{ \mathsf{ln} | \sigma(\alpha) | \big\}_{\sigma \in \mathcal{S}_{\infty}}, \big\{ -\mathsf{v}_{\mathfrak{p}}(\alpha) \cdot \mathsf{ln} \, \mathcal{N}(\mathfrak{p}) \big\}_{\mathfrak{p} \in \mathcal{S}} \Big).$$

• What is the impact of these $\ln \mathcal{N}(\mathfrak{p})$?

Theoretically: seems not to change much (same proven bounds)

- Better chosen S-unit combination: involving big ideals costs more.
- Optimal factor base phenomenon: some S maximizes the density !

In practice: (small dimensions)

- In much better geometric indicators
- very small approximation factors

イロト 不得 トイヨト イヨト

1		entitle and a Consult and all a se		
000	00000000	000000	00000	00
Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?

Impacts of the chosen logarithmic S-embedding

Logarithmic S-embedding ("twisted" representation)

$$\mathsf{Log}_{\mathcal{S}}(\alpha) = \Big(\big\{ \mathsf{ln} | \sigma(\alpha) | \big\}_{\sigma \in \mathcal{S}_{\infty}}, \big\{ -\mathsf{v}_{\mathfrak{p}}(\alpha) \cdot \mathsf{ln} \, \mathcal{N}(\mathfrak{p}) \big\}_{\mathfrak{p} \in \mathcal{S}} \Big).$$

• What is the impact of these $\ln \mathcal{N}(\mathfrak{p})$?

Theoretically: seems not to change much (same proven bounds)

- Better chosen S-unit combination: involving big ideals costs more.
- Optimal factor base phenomenon: some S maximizes the density !

In practice: (small dimensions)

- In much better geometric indicators
- very small approximation factors

イロト 不得 トイヨト イヨト

1		entitle and a Consult and all a se		
000	00000000	000000	00000	00
Motivations	\mathcal{S} -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?

Logarithmic S-embedding ("twisted" representation)

$$\mathsf{Log}_{\mathcal{S}}(\alpha) = \Big(\big\{ \mathsf{ln} | \sigma(\alpha) | \big\}_{\sigma \in \mathcal{S}_{\infty}}, \big\{ -\mathsf{v}_{\mathfrak{p}}(\alpha) \cdot \mathsf{ln} \, \mathcal{N}(\mathfrak{p}) \big\}_{\mathfrak{p} \in \mathcal{S}} \Big).$$

• What is the impact of these $\ln \mathcal{N}(\mathfrak{p})$?

Theoretically: seems not to change much (same proven bounds)

- Detter chosen S-unit combination: involving big ideals costs more.
- Optimal factor base phenomenon: some S maximizes the density !

In practice: (small dimensions)

- In much better geometric indicators
- very small approximation factors

1		entitle and a Consult and all a se		
000	00000000	000000	00000	00
Motivations	\mathcal{S} -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?

Logarithmic S-embedding ("twisted" representation)

$$\mathsf{Log}_{\mathcal{S}}(\alpha) = \Big(\big\{ \mathsf{ln} | \sigma(\alpha) | \big\}_{\sigma \in \mathcal{S}_{\infty}}, \big\{ -\mathsf{v}_{\mathfrak{p}}(\alpha) \cdot \mathsf{ln} \, \mathcal{N}(\mathfrak{p}) \big\}_{\mathfrak{p} \in \mathcal{S}} \Big).$$

• What is the impact of these $\ln \mathcal{N}(\mathfrak{p})$?

Theoretically: seems not to change much (same proven bounds)

- **\bigcirc** Better chosen S-unit combination: involving big ideals costs more.
- Optimal factor base phenomenon: some S maximizes the density !

In practice: (small dimensions)

- In much better geometric indicators
- very small approximation factors

1		entitle and a Consult and all a se		
000	00000000	000000	00000	00
Motivations	\mathcal{S} -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?

Logarithmic S-embedding ("twisted" representation)

$$\mathsf{Log}_{\mathcal{S}}(\alpha) = \left(\left\{ \mathsf{ln} | \sigma(\alpha) | \right\}_{\sigma \in \mathcal{S}_{\infty}}, \left\{ -\mathsf{v}_{\mathfrak{p}}(\alpha) \cdot \mathsf{ln} \, \mathcal{N}(\mathfrak{p}) \right\}_{\mathfrak{p} \in \mathcal{S}} \right).$$

• What is the impact of these $\ln \mathcal{N}(\mathfrak{p})$?

Theoretically: seems not to change much (same proven bounds)

- **\bigcirc** Better chosen S-unit combination: involving big ideals costs more.
- **2** Optimal factor base phenomenon: some S maximizes the density !

In practice: (small dimensions)

- In much better geometric indicators
- very small approximation factors

1		entitle and a Consult and all a se		
000	00000000	000000	00000	00
Motivations	\mathcal{S} -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?

Logarithmic S-embedding ("twisted" representation)

$$\mathsf{Log}_{\mathcal{S}}(\alpha) = \left(\left\{ \mathsf{ln} | \sigma(\alpha) | \right\}_{\sigma \in \mathcal{S}_{\infty}}, \left\{ -\mathsf{v}_{\mathfrak{p}}(\alpha) \cdot \mathsf{ln} \, \mathcal{N}(\mathfrak{p}) \right\}_{\mathfrak{p} \in \mathcal{S}} \right).$$

• What is the impact of these $\ln \mathcal{N}(\mathfrak{p})$?

Theoretically: seems not to change much (same proven bounds)

- **\bigcirc** Better chosen S-unit combination: involving big ideals costs more.
- **2** Optimal factor base phenomenon: some S maximizes the density !

In practice: (small dimensions)

- In much better geometric indicators
- very small approximation factors

1		entitle and a Consult and all a se		
000	00000000	000000	00000	00
Motivations	\mathcal{S} -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?

Logarithmic S-embedding ("twisted" representation)

$$\mathsf{Log}_{\mathcal{S}}(\alpha) = \left(\{ \mathsf{ln} | \sigma(\alpha) | \}_{\sigma \in \mathcal{S}_{\infty}}, \{ -\mathsf{v}_{\mathfrak{p}}(\alpha) \cdot \mathsf{ln} \, \mathcal{N}(\mathfrak{p}) \}_{\mathfrak{p} \in \mathcal{S}} \right).$$

• What is the impact of these $\ln \mathcal{N}(\mathfrak{p})$?

Theoretically: seems not to change much (same proven bounds)

- **9** Better chosen *S*-unit combination: involving big ideals costs more.
- **2** Optimal factor base phenomenon: some S maximizes the density !

In practice: (small dimensions)

- In much better geometric indicators
- very small approximation factors

1		entitle and a Consult and all a se		
000	00000000	000000	00000	00
Motivations	\mathcal{S} -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?

Logarithmic S-embedding ("twisted" representation)

$$\mathsf{Log}_{\mathcal{S}}(\alpha) = \left(\left\{ \mathsf{ln} | \sigma(\alpha) | \right\}_{\sigma \in \mathcal{S}_{\infty}}, \left\{ -\mathsf{v}_{\mathfrak{p}}(\alpha) \cdot \mathsf{ln} \, \mathcal{N}(\mathfrak{p}) \right\}_{\mathfrak{p} \in \mathcal{S}} \right).$$

• What is the impact of these $\ln \mathcal{N}(\mathfrak{p})$?

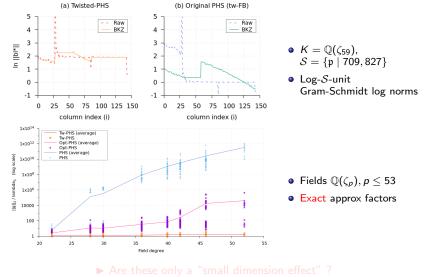
Theoretically: seems not to change much (same proven bounds)

- Better chosen S-unit combination: involving big ideals costs more.
- **②** Optimal factor base phenomenon: some S maximizes the density !

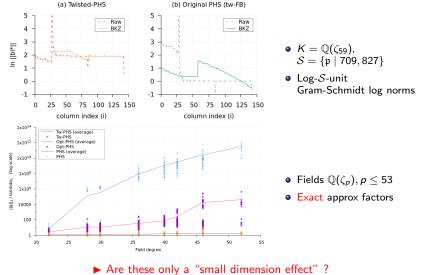
In practice: (small dimensions)

- In much better geometric indicators
- very small approximation factors

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?			
000	0000000	000000	00000	00			
Weights: a graphical praise							



Motivations 000	S-unit attacks 0000000●	A full-rank family of independent <i>S</i> -units	Experimental results 00000	What's next ? OO		
Weights: a graphical praise						



< □ > < 同 >

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?	
000	0000000	00000	00000	00	
Today's à la carte					

1 Motivations

2 S-unit attacks

3 A full-rank family of independent S-units

Experimental results

5 What's next ?

О.	Bernard	& al.
----	---------	-------

2

< □ > < □ > < □ > < □ > < □ >

Motivations	$\mathcal S$ -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?	
000	00000000	00000	00000	00	
A quick summary					

Let $K_m = \mathbb{Q}(\zeta_m)$, $m \not\equiv 2 \mod 4$, $n = \deg K_m$ $S = S_\infty \cup \{\mathfrak{L}_i \mid \ell_i \cdot \mathcal{O}_K; \ \ell_i \equiv 1 \mod m, i \in [\![1,d]\!] \}$ a set of places.

Oircular units

- ② Explicit Stickelberger generators

Theorem (suppose for the presentation that all \mathfrak{L}_i generate the class group)

These form a maximal set of independent S-units, generating a subgroup (modulo torsion) of index:

$$h_m^+ \cdot (h_m^-)^{d-1} \cdot 2^b \cdot (2^{\frac{\varphi(m)}{2}-1} \cdot 2^a)^d$$
, for explicitly defined a, b.

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?	
000	00000000	00000	00000	00	
A quick summary					

Let
$$K_m = \mathbb{Q}(\zeta_m)$$
, $m \neq 2 \mod 4$, $n = \deg K_m$
 $S = S_\infty \cup \{\mathfrak{L}_i \mid \ell_i \cdot \mathcal{O}_K; \ell_i \equiv 1 \mod m, i \in [\![1, d]\!] \}$ a set of places.

Oircular units

Explicit Stickelberger generators

④ Real \mathcal{S}^+ -units (that are not units) in K_m^+

Theorem (suppose for the presentation that all \mathfrak{L}_i generate the class group)

These form a maximal set of independent S-units, generating a subgroup (modulo torsion) of index:

$$h_m^+ \cdot \left(h_m^-\right)^{d-1} \cdot 2^b \cdot \left(2^{\frac{\varphi(m)}{2}-1} \cdot 2^a\right)^d, \quad \text{for explicitly defined a, b.}$$

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	00000	00000	00
A quick	summary			

Let
$$K_m = \mathbb{Q}(\zeta_m)$$
, $m \not\equiv 2 \mod 4$, $n = \deg K_m$
 $S = S_\infty \cup \{\mathfrak{L}_i \mid \ell_i \cdot \mathcal{O}_{\mathcal{K}}; \ \ell_i \equiv 1 \mod m, i \in \llbracket 1, d \rrbracket\}$ a set of places.

Oircular units

- e Explicit Stickelberger generators
- **③** Real S^+ -units (that are not units) in K_m^+

Theorem (suppose for the presentation that all \mathfrak{L}_i generate the class group)

These form a maximal set of independent S-units, generating a subgroup (modulo torsion) of index:

$$h_m^+ \cdot (h_m^-)^{d-1} \cdot 2^b \cdot \left(2^{\frac{\varphi(m)}{2}-1} \cdot 2^a\right)^d$$
, for explicitly defined a, b.

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	00000	00000	00
A quick	summary			

Let
$$K_m = \mathbb{Q}(\zeta_m)$$
, $m \neq 2 \mod 4$, $n = \deg K_m$
 $S = S_\infty \cup \{\mathfrak{L}_i \mid \ell_i \cdot \mathcal{O}_K; \ \ell_i \equiv 1 \mod m, i \in \llbracket 1, d \rrbracket\}$ a set of places.

- Oircular units
- e Explicit Stickelberger generators
- **③** Real S^+ -units (that are not units) in K_m^+

Theorem (suppose for the presentation that all \mathfrak{L}_i generate the class group)

These form a maximal set of independent S-units, generating a subgroup (modulo torsion) of index:

$$h_m^+ \cdot (h_m^-)^{d-1} \cdot 2^b \cdot (2^{\frac{\varphi(m)}{2}-1} \cdot 2^a)^d$$
, for explicitly defined a, b.

< □ > < 同 > < 三 > < 三

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	00000	00000	00
A quick	summary			

Let
$$K_m = \mathbb{Q}(\zeta_m)$$
, $m \neq 2 \mod 4$, $n = \deg K_m$
 $S = S_\infty \cup \{\mathfrak{L}_i \mid \ell_i \cdot \mathcal{O}_K; \ell_i \equiv 1 \mod m, i \in \llbracket 1, d \rrbracket\}$ a set of places.

- Oircular units
- e Explicit Stickelberger generators
- **③** Real S^+ -units (that are not units) in K_m^+

Theorem (suppose for the presentation that all \mathfrak{L}_i generate the class group)

These form a maximal set of independent S-units, generating a subgroup (modulo torsion) of index:

$$h_m^+ \cdot (h_m^-)^{d-1} \cdot 2^b \cdot (2^{\frac{\varphi(m)}{2}-1} \cdot 2^a)^d$$
, for explicitly defined a, b.

▶ Obtain a full-rank log-S-unit sub-lattice in dim *n* from S⁺-units in dim n/2. This is how we breach the $n \le 80$ barrier to reach n = 210 !

15 / 26

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	00000	00000	00
Circular u	inits			

Let $K_m = \mathbb{Q}(\zeta_m), m \not\equiv 2 \mod 4$.

Definition (Circular units)
Let V_m generated by $\left\{1-\zeta_m^a; \ 1\leq a\leq m ight\}$. The group of circular units is
$\mathcal{C}_m:=\mathcal{V}_m\cap\mathcal{O}_{\mathcal{K}_m}^{ imes}.$

For any *m*, we know:

- an explicit system of fundamental circular units,
- a basis of the log-unit sublattice of circular units, moreover ([CDW21]):

$$\|\mathsf{Log}_{\mathcal{S}_{\infty}}(1-\zeta_m^a)\|_2 \leq 1.32\sqrt{m}.$$

• an explicit formula for the index $\left[\mathcal{O}_{K_m}^{\times}: C_m\right]$ ([Sin80])

16 / 26

Motivations	$\mathcal S$ -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	000000	00000	00
Stickelbe	rger ideal			

Let
$$K_m = \mathbb{Q}(\zeta_m)$$
, $m \not\equiv 2 \mod 4$,
 $G_m = \operatorname{Gal}(K_m/\mathbb{Q}) = \{\sigma_s : \zeta_m \mapsto \zeta_m^s; (s, m) = 1\}.$

Let \mathcal{S}'_m be generated by $\{\theta_m(a); \ 0 < a < m\} \cup \{\frac{1}{2}N_m\}$, for:

$$\theta_m(\mathbf{a}) = \sum_{s \in (\mathbb{Z}/m\mathbb{Z})^{\times}} \left\{ -\frac{\mathbf{a}s}{m} \right\} \cdot \sigma_s^{-1} \in \mathbb{Q}[G_m],$$

and $N_m = \sum_{\sigma \in G_m} \sigma$. The Stickelberger ideal is $S_m = S'_m \cap \mathbb{Z}[G_m]$.

- Don't look too hard at the definition.
- The Stickelberger ideal gives free relations in Cl_{K_m} .
- The proof is explicit !

(日) (四) (日) (日) (日)

Motivations	$\mathcal S$ -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
Stickelbe	rger ideal			

Let
$$K_m = \mathbb{Q}(\zeta_m)$$
, $m \not\equiv 2 \mod 4$,
 $G_m = \operatorname{Gal}(K_m/\mathbb{Q}) = \{\sigma_s : \zeta_m \mapsto \zeta_m^s; (s, m) = 1\}.$

Let \mathcal{S}'_m be generated by $\{\theta_m(a); \ 0 < a < m\} \cup \{\frac{1}{2}N_m\}$, for:

$$\theta_m(\mathbf{a}) = \sum_{s \in (\mathbb{Z}/m\mathbb{Z})^{\times}} \left\{ -\frac{as}{m} \right\} \cdot \sigma_s^{-1} \in \mathbb{Q}[G_m],$$

and $N_m = \sum_{\sigma \in G_m} \sigma$. The Stickelberger ideal is $S_m = S'_m \cap \mathbb{Z}[G_m]$.

• Don't look too hard at the definition.

- The Stickelberger ideal gives free relations in Cl_{K_m} .
- The proof is explicit !

Motivations	$\mathcal S$ -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
Stickelbe	rger ideal			

Let
$$K_m = \mathbb{Q}(\zeta_m)$$
, $m \not\equiv 2 \mod 4$,
 $G_m = \operatorname{Gal}(K_m/\mathbb{Q}) = \{\sigma_s : \zeta_m \mapsto \zeta_m^s; (s, m) = 1\}.$

Let \mathcal{S}'_m be generated by $\{\theta_m(a); \ 0 < a < m\} \cup \{\frac{1}{2}N_m\}$, for:

$$\theta_m(\mathbf{a}) = \sum_{s \in (\mathbb{Z}/m\mathbb{Z})^{\times}} \left\{ -\frac{as}{m} \right\} \cdot \sigma_s^{-1} \in \mathbb{Q}[G_m],$$

and $N_m = \sum_{\sigma \in G_m} \sigma$. The Stickelberger ideal is $S_m = S'_m \cap \mathbb{Z}[G_m]$.

- Don't look too hard at the definition.
- The Stickelberger ideal gives free relations in CI_{K_m} .
- The proof is explicit !

0.	Bernard	& al.	
----	---------	-------	--

э

Motivations	$\mathcal S$ -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
Stickelbe	rger ideal			

Let
$$K_m = \mathbb{Q}(\zeta_m)$$
, $m \neq 2 \mod 4$,
 $G_m = \operatorname{Gal}(K_m/\mathbb{Q}) = \{\sigma_s : \zeta_m \mapsto \zeta_m^s; (s, m) = 1\}.$

Let \mathcal{S}'_m be generated by $\{\theta_m(a); \ 0 < a < m\} \cup \{\frac{1}{2}N_m\}$, for:

$$\theta_m(\mathbf{a}) = \sum_{s \in (\mathbb{Z}/m\mathbb{Z})^{\times}} \left\{ -\frac{as}{m} \right\} \cdot \sigma_s^{-1} \in \mathbb{Q}[G_m],$$

and $N_m = \sum_{\sigma \in G_m} \sigma$. The Stickelberger ideal is $S_m = S'_m \cap \mathbb{Z}[G_m]$.

- Don't look too hard at the definition.
- The Stickelberger ideal gives free relations in CI_{K_m} .
- The proof is explicit !

э

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	000000	00000	00
Explicit S	Stickelberger g	enerators		

There is an explicit $\gamma \in K_m$ st. $\langle \gamma \rangle = \mathfrak{L}^{\beta \theta_m(-1)}$:

- $\chi_{\mathfrak{L}} : a \in \mathcal{O}_{\mathcal{K}}/\mathfrak{L} \longmapsto \zeta_{m}^{k} \equiv a^{(\ell-1)/m} \mod \mathfrak{L},$ (ℓ -th power Legendre symbol) • $g(\chi_{\mathfrak{L}}) = -\sum_{a \in \mathbb{F}_{\ell}^{*}} \chi_{\mathfrak{L}}(a) \cdot \zeta_{\ell}^{a} \in \mathbb{Q}[\zeta_{m\ell}],$ (Gauss sum)
- $\langle g(\chi_{\mathfrak{L}})^{\beta} \rangle = \mathfrak{L}^{\beta \theta_m(-1)}$. (Stickelberger factorization)

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
Explicit S	Stickelberger g	enerators		

There is an explicit $\gamma \in K_m$ st. $\langle \gamma \rangle = \mathfrak{L}^{\beta \theta_m(-1)}$:

- $\chi_{\mathfrak{L}} : \mathbf{a} \in \mathcal{O}_{\mathcal{K}}/\mathfrak{L} \longmapsto \zeta_{m}^{k} \equiv \mathbf{a}^{(\ell-1)/m} \mod \mathfrak{L}, \quad (\ell\text{-th power Legendre symbol})$ • $\mathbf{g}(\chi_{\mathfrak{L}}) = -\sum_{\mathbf{a} \in \mathbb{F}_{\ell}^{*}} \chi_{\mathfrak{L}}(\mathbf{a}) \cdot \zeta_{\ell}^{\mathbf{a}} \in \mathbb{Q}[\zeta_{m\ell}], \quad (Gauss sum)$
- $\langle g(\chi_{\mathfrak{L}})^{\beta} \rangle = \mathfrak{L}^{\beta \theta_m(-1)}$. (Stickelberger factorization)

э

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
Explicit S	Stickelberger g	enerators		

There is an explicit $\gamma \in K_m$ st. $\langle \gamma \rangle = \mathfrak{L}^{\beta \theta_m(-1)}$:

- $\chi_{\mathfrak{L}} : a \in \mathcal{O}_{\mathcal{K}}/\mathfrak{L} \longmapsto \zeta_{m}^{k} \equiv a^{(\ell-1)/m} \mod \mathfrak{L}, \quad (\ell\text{-th power Legendre symbol})$ • $g(\chi_{\mathfrak{L}}) = -\sum_{a \in \mathbb{F}_{\ell}^{*}} \chi_{\mathfrak{L}}(a) \cdot \zeta_{\ell}^{a} \in \mathbb{Q}[\zeta_{m\ell}], \quad (Gauss sum)$
- $\langle g(\chi_{\mathfrak{L}})^{\beta} \rangle = \mathfrak{L}^{\beta \theta_m(-1)}$. (Stickelberger factorization)

3

Motivations	\mathcal{S} -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
Explicit S	stickelberger e	renerators		

There is an explicit $\gamma \in K_m$ st. $\langle \gamma \rangle = \mathfrak{L}^{\beta \theta_m(-1)}$:

- $\chi_{\mathfrak{L}} : a \in \mathcal{O}_{K}/\mathfrak{L} \longmapsto \zeta_{m}^{k} \equiv a^{(\ell-1)/m} \mod \mathfrak{L}, \quad (\ell\text{-th power Legendre symbol})$ • $g(\chi_{\mathfrak{L}}) = -\sum_{a \in \mathbb{F}_{\ell}^{*}} \chi_{\mathfrak{L}}(a) \cdot \zeta_{\ell}^{a} \in \mathbb{Q}[\zeta_{m\ell}], \quad (Gauss sum)$
- $\langle g(\chi_{\mathfrak{L}})^{\beta} \rangle = \mathfrak{L}^{\beta \theta_m(-1)}$. (Stickelberger factorization)

Problems:

- Ompute in $\mathbb{Q}[\zeta_{m\ell}]$?
- ② Coefficients grow FAST
- ⁽³⁾ We will need to 2-saturate these, so we have to start as low as possible.

Motivations	\mathcal{S} -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
Explicit S	stickelberger e	renerators		

There is an explicit $\gamma \in K_m$ st. $\langle \gamma \rangle = \mathfrak{L}^{\beta \theta_m(-1)}$:

- $\chi_{\mathfrak{L}} : a \in \mathcal{O}_{\mathcal{K}}/\mathfrak{L} \longmapsto \zeta_{m}^{k} \equiv a^{(\ell-1)/m} \mod \mathfrak{L}, \quad (\ell\text{-th power Legendre symbol})$ • $g(\chi_{\mathfrak{L}}) = -\sum_{a \in \mathbb{F}_{\ell}^{*}} \chi_{\mathfrak{L}}(a) \cdot \zeta_{\ell}^{a} \in \mathbb{Q}[\zeta_{m\ell}], \quad (Gauss sum)$
- $\langle g(\chi_{\mathfrak{L}})^{\beta} \rangle = \mathfrak{L}^{\beta\theta_m(-1)}$. (Stickelberger factorization)

Problems:

• Compute in $\mathbb{Q}[\zeta_{m\ell}]$?

② Coefficients grow FAST

We will need to 2-saturate these, so we have to start as low as possible.

Motivations	\mathcal{S} -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
Explicit S	stickelberger e	renerators		

There is an explicit $\gamma \in K_m$ st. $\langle \gamma \rangle = \mathfrak{L}^{\beta \theta_m(-1)}$:

- $\chi_{\mathfrak{L}} : a \in \mathcal{O}_{\mathcal{K}}/\mathfrak{L} \longmapsto \zeta_{m}^{k} \equiv a^{(\ell-1)/m} \mod \mathfrak{L}, \quad (\ell\text{-th power Legendre symbol})$ • $g(\chi_{\mathfrak{L}}) = -\sum_{a \in \mathbb{F}_{\ell}^{*}} \chi_{\mathfrak{L}}(a) \cdot \zeta_{\ell}^{a} \in \mathbb{Q}[\zeta_{m\ell}], \quad (Gauss sum)$
- $\langle g(\chi_{\mathfrak{L}})^{\beta} \rangle = \mathfrak{L}^{\beta\theta_m(-1)}$. (Stickelberger factorization)

Problems:

• Compute in $\mathbb{Q}[\zeta_{m\ell}]$?

② Coefficients grow FAST

We will need to 2-saturate these, so we have to start as low as possible.

Motivations	\mathcal{S} -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
Explicit S	stickelberger e	renerators		

There is an explicit $\gamma \in K_m$ st. $\langle \gamma \rangle = \mathfrak{L}^{\beta \theta_m(-1)}$:

- $\chi_{\mathfrak{L}} : a \in \mathcal{O}_{\mathcal{K}}/\mathfrak{L} \longmapsto \zeta_{m}^{k} \equiv a^{(\ell-1)/m} \mod \mathfrak{L}, \quad (\ell\text{-th power Legendre symbol})$ • $g(\chi_{\mathfrak{L}}) = -\sum_{a \in \mathbb{F}_{\ell}^{*}} \chi_{\mathfrak{L}}(a) \cdot \zeta_{\ell}^{a} \in \mathbb{Q}[\zeta_{m\ell}], \quad (Gauss sum)$
- $\langle g(\chi_{\mathfrak{L}})^{\beta} \rangle = \mathfrak{L}^{\beta\theta_m(-1)}$. (Stickelberger factorization)

Problems:

- Compute in $\mathbb{Q}[\zeta_{m\ell}]$?
- Ocertificients grow FAST
- **③** We will need to 2-saturate these, so we have to start as low as possible.

3

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
Short Stie	ckelberger rela	ations		

Short:
$$\beta = \sum_{\sigma} \varepsilon_{\sigma} \sigma \in \mathbb{Z}[G_m]$$
, with $\varepsilon_{\sigma} \in \{0, 1\}$

Theorem (A family of short Stickelberger elements [BK21, Pr.3.1])

Let a, b st. $m \nmid a$, $m \nmid b$, $m \nmid (a + b)$. Then:

$$\theta_{a,b} = \theta_m(a) + \theta_m(b) - \theta_m(a+b)$$

is short; moreover $\|\theta_{a,b}\|_2 = \sqrt{\varphi(m)/2}$.

- Express corresponding generators by Jacobi sums: $(\langle \mathcal{J}_{\mathfrak{L}}(a,b) \rangle = \mathfrak{L}^{\theta_{a,b}})$ $\mathcal{J}_{\mathfrak{L}}(a,b) = -\sum_{u \in \mathcal{O}_{K_m}/\mathfrak{L}} \chi^{a}_{\mathfrak{L}}(u)\chi^{b}_{\mathfrak{L}}(1-u) \in \mathbb{Q}[\zeta_m].$ [BK21, §5]
- From these we can even extract a short basis for any m. ([BK21, Th.3.6])
 ⇒ Coefficients on ℤ[ζ_m] stay (much much) lower, no denominators. This is especially crucial for the 2-saturation step in big dimensions !
- The proof gives an algorithm to compute h_m^- . (a determinant computation)

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
Short Stie	ckelberger rela	ations		

Short:
$$\beta = \sum_{\sigma} \varepsilon_{\sigma} \sigma \in \mathbb{Z}[G_m]$$
, with $\varepsilon_{\sigma} \in \{0, 1\}$

Theorem (A family of short Stickelberger elements [BK21, Pr.3.1])

Let a, b st. $m \nmid a$, $m \nmid b$, $m \nmid (a + b)$. Then:

$$\theta_{a,b} = \theta_m(a) + \theta_m(b) - \theta_m(a+b)$$

is short; moreover $\|\theta_{a,b}\|_2 = \sqrt{\varphi(m)/2}$.

• Express corresponding generators by Jacobi sums: $(\langle \mathcal{J}_{\mathfrak{L}}(a,b) \rangle = \mathfrak{L}^{\theta_{a,b}})$ $\mathcal{J}_{\mathfrak{L}}(a,b) = -\sum_{u \in \mathcal{O}_{K_m}/\mathfrak{L}} \chi^{a}_{\mathfrak{L}}(u)\chi^{b}_{\mathfrak{L}}(1-u) \in \mathbb{Q}[\zeta_m].$ [BK21, §5]

 From these we can even extract a short basis for any m. ([BK21, Th.3.6])
 ⇒ Coefficients on ℤ[ζ_m] stay (much much) lower, no denominators. This is especially crucial for the 2-saturation step in big dimensions !

• The proof gives an algorithm to compute h_m^- . (a determinant computation)

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
Short Stie	ckelberger rela	ations		

Short: $\beta = \sum_{\sigma} \varepsilon_{\sigma} \sigma \in \mathbb{Z}[G_m]$, with $\varepsilon_{\sigma} \in \{0, 1\}$

Theorem (A family of short Stickelberger elements [BK21, Pr.3.1])

Let a, b st. $m \nmid a$, $m \nmid b$, $m \nmid (a + b)$. Then:

$$\theta_{a,b} = \theta_m(a) + \theta_m(b) - \theta_m(a+b)$$

is short; moreover $\|\theta_{a,b}\|_2 = \sqrt{\varphi(m)/2}$.

- Express corresponding generators by Jacobi sums: $(\langle \mathcal{J}_{\mathfrak{L}}(a,b) \rangle = \mathfrak{L}^{\theta_{a,b}})$ $\mathcal{J}_{\mathfrak{L}}(a,b) = -\sum_{u \in \mathcal{O}_{K_m}/\mathfrak{L}} \chi^{a}_{\mathfrak{L}}(u)\chi^{b}_{\mathfrak{L}}(1-u) \in \mathbb{Q}[\zeta_m].$ [BK21, §5]
- From these we can even extract a short basis for any m. ([BK21, Th.3.6])
 ⇒ Coefficients on ℤ[ζ_m] stay (much much) lower, no denominators. This is especially crucial for the 2-saturation step in big dimensions !

• The proof gives an algorithm to compute h_m^- . (a determinant computation)

0.	Bernard	& al.	
----	---------	-------	--

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
Short Stie	ckelberger rela	ations		

Short: $\beta = \sum_{\sigma} \varepsilon_{\sigma} \sigma \in \mathbb{Z}[G_m]$, with $\varepsilon_{\sigma} \in \{0, 1\}$

Theorem (A family of short Stickelberger elements [BK21, Pr.3.1])

Let a, b st. $m \nmid a$, $m \nmid b$, $m \nmid (a + b)$. Then:

$$\theta_{a,b} = \theta_m(a) + \theta_m(b) - \theta_m(a+b)$$

is short; moreover $\|\theta_{a,b}\|_2 = \sqrt{\varphi(m)/2}$.

- Express corresponding generators by Jacobi sums: $(\langle \mathcal{J}_{\mathfrak{L}}(a,b) \rangle = \mathfrak{L}^{\theta_{a,b}})$ $\mathcal{J}_{\mathfrak{L}}(a,b) = -\sum_{u \in \mathcal{O}_{K_m}/\mathfrak{L}} \chi^{a}_{\mathfrak{L}}(u)\chi^{b}_{\mathfrak{L}}(1-u) \in \mathbb{Q}[\zeta_m].$ [BK21, §5]
- From these we can even extract a short basis for any m. ([BK21, Th.3.6])
 ⇒ Coefficients on ℤ[ζ_m] stay (much much) lower, no denominators. This is especially crucial for the 2-saturation step in big dimensions !
- The proof gives an algorithm to compute h_m^- . (a determinant computation)

О.	Bernard	&	al.	
----	---------	---	-----	--

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
Today's	à la carte			

Motivations

2 S-unit attacks

3 A full-rank family of independent S-units

Experimental results

5 What's next ?

2

< □ > < □ > < □ > < □ > < □ >

Motivations	\mathcal{S} -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
What do we want ?				

Geometric characteristics of log-S-unit (sub)lattices

- Better Approx Factors than predicted by theory ? Also in higher regimes ?
- ④ We only have a picture for degree \leq 70 for (1), degree \leq 52 for (2)
- ▶ Necessary to gather more experimental observations before predicting things

Climbing degrees is classically HARD !!

<ロト < 同ト < ヨト < ヨ)

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
What do	we want ?			

- Geometric characteristics of log-S-unit (sub)lattices
- ⁽²⁾ Better Approx Factors than predicted by theory ? Also in higher regimes ?
- (a) We only have a picture for degree \leq 70 for (1), degree \leq 52 for (2)
- Necessary to gather more experimental observations before predicting things

Climbing degrees is classically HARD !!

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	000000	00000	00
What do	we want ?			

- Geometric characteristics of log-S-unit (sub)lattices
- ⁽²⁾ Better Approx Factors than predicted by theory ? Also in higher regimes ?
- Solution We only have a picture for degree \leq 70 for (1), degree \leq 52 for (2)
- Necessary to gather more experimental observations before predicting things

Climbing degrees is classically HARD !!

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
What do	we want ?			

- Geometric characteristics of log-S-unit (sub)lattices
- ⁽²⁾ Better Approx Factors than predicted by theory ? Also in higher regimes ?
- We only have a picture for degree \leq 70 for (1), degree \leq 52 for (2)
- ► Necessary to gather more experimental observations before predicting things

Climbing degrees is classically HARD !!

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00
What do	we want ?			

- Geometric characteristics of log-S-unit (sub)lattices
- ⁽²⁾ Better Approx Factors than predicted by theory ? Also in higher regimes ?
- **③** We only have a picture for degree \leq 70 for (1), degree \leq 52 for (2)
- ► Necessary to gather more experimental observations before predicting things

Climbing degrees is classically HARD !!

Motivations	\mathcal{S} -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	000000	00000	00
What do	we have ?			

Compute:

O Circular units

- S^+ -units (of norm > 1)
- (a) Stickelberger generators $\mathcal{J}_{\mathfrak{L}}(a,b)$ of a basis of $\theta_{a,b}$'s of \mathcal{S}_m
- I 2-saturation of these to remove the 2^{HUGE} in the index in $\mathcal{O}_{K_m,S}^{\times}$
- ▶ Obtain "Twisted-PHS like" log-S-unit sub-lattices, for deg Q(ζ_m) ≤ 210. Remaining index: ≈ (h_m⁻)^{d-1}
- ▶ This is only a degraded mode of Twisted-PHS, for example in $\mathbb{Q}(\zeta_{211})$:
 - min Vol^{1/dim} $L_{sat} = 11.39$, reached for d = 1
 - min Vol^{1/dim} $L_{su} = 9.6$, reached for $d_{max} = 7$ (uncomputable)

э

(日) (四) (日) (日) (日)

Motivations	\mathcal{S} -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	000000	00000	00
What do	we have ?			

Compute:

- O Circular units
- **2** S^+ -units (of norm > 1)
- 3 Stickelberger generators $\mathcal{J}_{\mathfrak{L}}(a, b)$ of a basis of $\theta_{a,b}$'s of \mathcal{S}_m
- ④ 2-saturation of these to remove the 2^{HUGE} in the index in $\mathcal{O}_{K_m,S}^{ imes}$
- ▶ Obtain "Twisted-PHS like" log-S-unit sub-lattices, for deg Q(ζ_m) ≤ 210. Remaining index: ≈ (h_m⁻)^{d-1}
- ▶ This is only a degraded mode of Twisted-PHS, for example in $\mathbb{Q}(\zeta_{211})$:
 - min Vol^{1/dim} $L_{sat} = 11.39$, reached for d = 1
 - min Vol^{1/dim} $L_{su} = 9.6$, reached for $d_{max} = 7$ (uncomputable)

(日) (四) (日) (日) (日)

Motivations	\mathcal{S} -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	000000	00000	00
What do	we have ?			

Compute:

- O Circular units
- **2** S^+ -units (of norm > 1)
- Stickelberger generators $\mathcal{J}_{\mathfrak{L}}(a, b)$ of a basis of $\theta_{a,b}$'s of \mathcal{S}_m

④ 2-saturation of these to remove the 2^{HUGE} in the index in $\mathcal{O}_{K_m,S}^{ imes}$

- ▶ Obtain "Twisted-PHS like" log-S-unit sub-lattices, for deg Q(ζ_m) ≤ 210. Remaining index: ≈ (h_m⁻)^{d-1}
- ▶ This is only a degraded mode of Twisted-PHS, for example in $\mathbb{Q}(\zeta_{211})$:
 - min Vol^{1/dim} $L_{sat} = 11.39$, reached for d = 1
 - min Vol^{1/dim} $L_{su} = 9.6$, reached for $d_{max} = 7$ (uncomputable)

< ロ > < 同 > < 回 > < 回 >

Motivations	\mathcal{S} -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	000000	00000	00
What do	we have ?			

Compute:

- O Circular units
- **2** S^+ -units (of norm > 1)
- Stickelberger generators $\mathcal{J}_{\mathfrak{L}}(a, b)$ of a basis of $\theta_{a,b}$'s of \mathcal{S}_m
- 2-saturation of these to remove the 2^{HUGE} in the index in $\mathcal{O}_{K_m,S}^{\times}$
- ▶ Obtain "Twisted-PHS like" log-S-unit sub-lattices, for deg Q(ζ_m) ≤ 210. Remaining index: ≈ (h_m⁻)^{d-1}
- ▶ This is only a degraded mode of Twisted-PHS, for example in $\mathbb{Q}(\zeta_{211})$:
 - min Vol^{1/dim} $L_{sat} = 11.39$, reached for d = 1
 - min Vol^{1/dim} $L_{su} = 9.6$, reached for $d_{max} = 7$ (uncomputable)

3

< ロ > < 同 > < 回 > < 回 >

Motivations	\mathcal{S} -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	000000	00000	00
What do	we have ?			

Compute:

- O Circular units
- **2** S^+ -units (of norm > 1)
- Stickelberger generators $\mathcal{J}_{\mathfrak{L}}(a, b)$ of a basis of $\theta_{a,b}$'s of \mathcal{S}_m
- 2-saturation of these to remove the 2^{HUGE} in the index in $\mathcal{O}_{K_m,S}^{\times}$
- ► Obtain "Twisted-PHS like" log-S-unit sub-lattices, for deg Q(ζ_m) ≤ 210. Remaining index: ≈ (h_m⁻)^{d-1}
- ▶ This is only a degraded mode of Twisted-PHS, for example in $\mathbb{Q}(\zeta_{211})$:
 - min Vol^{1/dim} $L_{sat} = 11.39$, reached for d = 1
 - min Vol^{1/dim} $L_{su} = 9.6$, reached for $d_{max} = 7$ (uncomputable)

3

(日) (四) (日) (日) (日)

Motivations	\mathcal{S} -unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	00000000	000000	00000	00
What do	we have ?			

Compute:

- O Circular units
- **2** S^+ -units (of norm > 1)
- Stickelberger generators $\mathcal{J}_{\mathfrak{L}}(a, b)$ of a basis of $\theta_{a,b}$'s of \mathcal{S}_m
- 2-saturation of these to remove the 2^{HUGE} in the index in $\mathcal{O}_{K_m,S}^{\times}$
- ► Obtain "Twisted-PHS like" log-S-unit sub-lattices, for deg Q(ζ_m) ≤ 210. Remaining index: ≈ (h_m⁻)^{d-1}
- ▶ This is only a degraded mode of Twisted-PHS, for example in $\mathbb{Q}(\zeta_{211})$:
 - min Vol^{1/dim} $L_{sat} = 11.39$, reached for d = 1
 - min Vol^{1/dim} $L_{su} = 9.6$, reached for $d_{max} = 7$ (uncomputable)

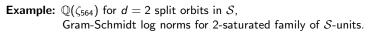
3

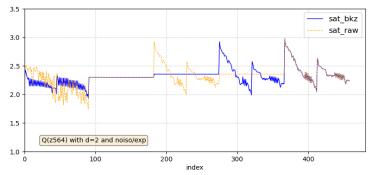
22 / 26

イロト イボト イヨト イヨト

Coordinate	have at a station			
000	0000000	000000	00000	00
Motivations	S-unit attacks	A full-rank family of independent S-units	Experimental results	What's next ?

Geometric characteristics





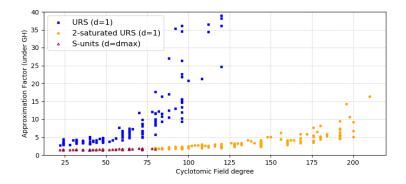
Same shape: (same geometric observations than in Twisted-PHS)

- across all cyclotomic fields of degree ≤ 210 (even in largest dimensions)
- for all choices of factor base S, any sublattice (saturated or not)
- ▶ This is a very general geometric phenomenon

23 / 26

< □ > < 同 >

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00

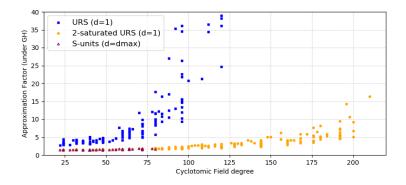


• Upper bounds the performance of S-unit attacks beyond degree 100

- Shows no catastrophic impact of S-unit attacks, neither reassuring
- Strong connection between AF and Vol^{1/dim}
- ▶ Opens the way to a high dimension simulator.

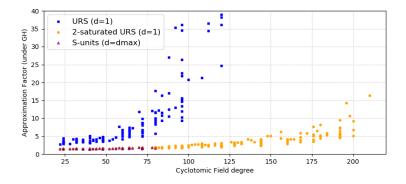
• • • • • • • • • • • •

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	00



- Upper bounds the performance of S-unit attacks beyond degree 100
- Shows no catastrophic impact of S-unit attacks, neither reassuring
- Strong connection between AF and Vol^{1/dim}
- ▶ Opens the way to a high dimension simulator.

Motivations	$\mathcal S$ -unit attacks	A full-rank family of independent S-units	Experimental results	What's next ?
000	0000000	000000	00000	00

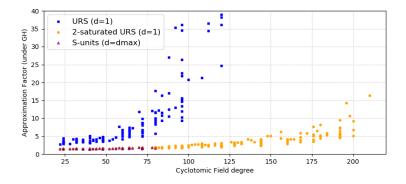


- Upper bounds the performance of S-unit attacks beyond degree 100
- Shows no catastrophic impact of S-unit attacks, neither reassuring
- Strong connection between AF and Vol^{1/dim}
- ▶ Opens the way to a high dimension simulator.

О.	Bernard	&	al.	
----	---------	---	-----	--

< □ > < 同 >

Motivations	$\mathcal S$ -unit attacks	A full-rank family of independent S-units	Experimental results	What's next ?
000	0000000	000000	00000	00



- Upper bounds the performance of S-unit attacks beyond degree 100
- Shows no catastrophic impact of S-unit attacks, neither reassuring
- Strong connection between AF and Vol^{1/dim}
- ► Opens the way to a high dimension simulator.

О.	Bernard	&	al.
----	---------	---	-----

Motivations	S-unit attacks	A full-rank family of independent S -units	Experimental results	What's next ?
000	0000000	000000	00000	•0
Today's a	à la carte			

Motivations

2 S-unit attacks

3 A full-rank family of independent S-units

Experimental results

5 What's next ?

Motivations	$\mathcal S$ -unit attacks	A full-rank family of independent S-units	Experimental results	What's next ?
000	0000000	000000	00000	00
Future work				

Oerive a reliable estimator of Twisted-PHS performances.

- Use extended data to reliably support heuristics and estimations.
- Explain the strong connection between final AF and Vol^{1/d} L.
- Obtain full log-S-unit lattices:
 - for real subfield with $h_m^+ > 1$ (just a technical wizardry issue);
 - for higher degree cyclotomic fields $(n \ge 80)$ for several Galois orbits;
 - for other families of number fields (multi-quadratics).

イロト イヨト イヨト イヨト

Motivations	$\mathcal S$ -unit attacks	A full-rank family of independent S-units	Experimental results	What's next ?
000	0000000	000000	00000	00
Future work				

1 Derive a reliable estimator of Twisted-PHS performances.

- Use extended data to reliably support heuristics and estimations.
- Explain the strong connection between final AF and Vol^{1/d} L.
- Obtain full log-S-unit lattices:
 - for real subfield with $h_m^+ > 1$ (just a technical wizardry issue);
 - for higher degree cyclotomic fields ($n \ge 80$) for several Galois orbits;
 - for other families of number fields (multi-quadratics).

< ロ > < 同 > < 回 > < 回 >