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Continued Fractions I

A continued fraction associated to two sequences a(n) and
b(n) with b(n) 6= 0 for all n is an expression

S = a(0) +
b(0)

a(1) +
b(1)

a(2) +
b(2)

a(3) +
. . .

assuming the limit of p(n)/q(n) exists, where p(n)/q(n) is the
fraction obtained by truncating at b(n − 1)/a(n).

Almost all continued fractions occurring in the literature
associated either to fixed real numbers or to functions are such
that a(n) and b(n) are rational functions of n for n sufficiently
large, possibly depending on the parity of n or even on n
modulo N ≥ 3.
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Continued Fractions II

Trivial that if r(0) = 1 and r(n) 6= 0 for all n is any sequence,
(a(n)r(n),b(n)r(n)r(n + 1)) give the same convergents
p(n)/q(n), so we may always assume that a(n) and b(n) are
polynomials in n for n sufficiently large, again possibly
depending on a congruence of n. Such a continued fraction will
be said to be of polynomial type, and are the only ones we
consider.

Examples with no congruence and congruence modulo 2:

ez = 1 +
2z

2− z +
z2

6 +
z2

10 +
z2

14 +
. . .
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Continued Fractions III

1 + z
z

log(1 + z) = 1 +
z

2 +
1.2z

3 +
1.2z

4 +
2.3z

5 +
2.3z

6 +
3.4z

7 +
. . .
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Goals I

In the literature, the speed of convergence is almost never
given, or requires many pages. The package gives it
immediately up to a multiplicative constant C.
The package computes numerically the limit S, but also
(less trivially) the multiplicative constant C.
The package can simplify in several ways (removing
denominators, contraction, etc...) a given continued
fraction.

Henri Cohen A Pari/GP Package for Continued Fractions



Goals I

In the literature, the speed of convergence is almost never
given, or requires many pages. The package gives it
immediately up to a multiplicative constant C.
The package computes numerically the limit S, but also
(less trivially) the multiplicative constant C.
The package can simplify in several ways (removing
denominators, contraction, etc...) a given continued
fraction.

Henri Cohen A Pari/GP Package for Continued Fractions



Goals I

In the literature, the speed of convergence is almost never
given, or requires many pages. The package gives it
immediately up to a multiplicative constant C.
The package computes numerically the limit S, but also
(less trivially) the multiplicative constant C.
The package can simplify in several ways (removing
denominators, contraction, etc...) a given continued
fraction.

Henri Cohen A Pari/GP Package for Continued Fractions



Goals II

The package can accelerate the convergence of a
continued fraction, and thus obtain new ones.
The most surprising and important fact is that it can even
automatically do what I call Apéry acceleration, converting
a slowly convergent series into an exponentially
convergent one, and incredibly enough, this works for most
slowly convergent series in the literature, and even
transforms an exponentially convergent one into one
converging exponentially better.
A final goal is to help create a compendium of the most
important continued fractions, together with both their
speed of convergence, and whenever possible, their
accelerated counterparts.
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Speeds of Convergence I

It can be shown that there are five different types of
convergence, which can be summarized by three formulas:
either

S − p(n)
q(n)

∼ C
n!kEnnP

for some constants (C, k ,E ,P) with CE 6= 0,or

S − p(n)
q(n)

∼ εn C

e
√

Dn

for some ε = ±1 and constants (C,D) with C 6= 0 and D > 0,or
(very exceptionally)

S − p(n)
q(n)

∼ C
log(n)

with C 6= 0.
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Speeds of Convergence II

I mention five types because the first one

S − p(n)
q(n)

∼ C
n!kEnnP

is divided into three subtypes: first k > 0 (so that n!k

dominates), factorial convergence, second k = 0 and |E | > 1
(so that En dominates), exponential convergence, and third
k = 0, |E | = 1, and P > 0, polynomial convergence. The
second εnC/e

√
Dn and third types C/ log(n) are called

subexponential and logarithmic convergence respectively.

We will ignore the very rare logarithmic convergence (although
it is detected by the package), and denote by the four-
component vector [k ,E ,D,P] the type of convergence.
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Speeds of Convergence III

Warning concerning limits and asymptotics:

– In case of logarithmic convergence, the package is unable to
do anything, I do not know of any algorithm to compute
numerically the limit and a fortiori the asymptotics.

– In case of polynomial convergence P, we use extrapolating
techniques which work only if P is a rational number with small
denominator d (in practice d ≤ 4). If d ≥ 5, the result may
either be completely wrong (for instance 10250 instead of 1), or
have only very few correct decimals. The value of P can be
checked using the function cftype, see below.
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Creating Continued Fractions I

From now on, I will introduce the functions of the package and
give a large number of examples. A continued fraction (CF) is a
pair (a,b) of closures in the sense of Pari/GP. For instance the
continued fraction for ez given above is created by

a=(n->if(n==0,1,if(n==1,2-z,4*n-2)));

b=(n->if(n==0,2*z,z^2));

and the continued fraction itself is the 2-component vector
[a,b]. For the convenience of the user, GP also accepts

a=[1,2-z,4*n-2];b=[2*z,z^2];

and a conversion back and forth to and from closures is done
internally using the functions cfvectoclos and cfclostovec.

Important function cfsubst: since we cannot directly replace in
a closure, specific function: ab3=cfsubst([a,b],z,3) gives
the above CF for z = 3.
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Creating Continued Fractions II

There also exist a number of creators which create the
necesssary closures: most useful is cffromser, which converts
a series into a continued fraction (due to Euler). Example:

? ab=cffromser(n->n^3,n->n^3);

/* Create CF corresponding to \sum_{n\ge1}1/n^3 */

? cfclostovec(ab,’n)

% = [[0, 2*n^3 - 3*n^2 + 3*n - 1], [1, -n^6]]

? cftochar(ab)

% = "1/(1-1/(9-64/(35-729/(91-4096/(189-15625/(341))))))"

? print(cftotex(ab, 4))

\dfrac{1}{1-\dfrac{1}{9-\dfrac{64}{35-\dfrac{729}{91-\ddots}}}}

? cflimit(ab)

% = 1.2020569.... /* zeta(3) */

Above, 3 different ways of looking at the trivial continued
fraction for ζ(3).
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Creating Continued Fractions III

cffromser can also be used in other ways:

? ab=cffromser(n->1/(n+1),-1);

/* CF corresponding to \log(2)=\sum_{n\ge0}(-1)^n/(n+1) */

? ab=cffromser(exp(x)+O(x^11))

% = [Vecsmall([0, 1]), [1, -1, 1/2, -1/6, 1/6, -1/10]]

/* CF expansion of exp(x)

Also available is cffromquad:

? z=Mod(x,x^2-x-1);ab=cffromquad(z);cftochar(ab)

% = "1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1))))))"

/* CF expansion of golden ratio, what else? */

? ab=cffromquad(z,-1);cftochar(ab)

% = "2-1/(3-1/(3-1/(3-1/(3-1/(3-1/(3))))))"

/* CF expansion with -1 numerators, much faster convergence */

Henri Cohen A Pari/GP Package for Continued Fractions



Creating Continued Fractions III

cffromser can also be used in other ways:

? ab=cffromser(n->1/(n+1),-1);

/* CF corresponding to \log(2)=\sum_{n\ge0}(-1)^n/(n+1) */

? ab=cffromser(exp(x)+O(x^11))

% = [Vecsmall([0, 1]), [1, -1, 1/2, -1/6, 1/6, -1/10]]

/* CF expansion of exp(x)

Also available is cffromquad:

? z=Mod(x,x^2-x-1);ab=cffromquad(z);cftochar(ab)

% = "1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1))))))"

/* CF expansion of golden ratio, what else? */

? ab=cffromquad(z,-1);cftochar(ab)

% = "2-1/(3-1/(3-1/(3-1/(3-1/(3-1/(3))))))"

/* CF expansion with -1 numerators, much faster convergence */

Henri Cohen A Pari/GP Package for Continued Fractions



Basic Functions on Continued Fractions I

cfpnqn gives the nth partial quotient, with different options:

? z=Mod(x,x^2-x-1);ab=cffromquad(z);cfpnqn(ab,5)

% = [[2, 1], [3, 2], [5, 3], [8, 5], [13, 8]]

? cfpnqn(ab,5,1) /* matrix [p(n),p(n-1);q(n),q(n-1)] */

% =

[13 8]

[ 8 5]

? cfpnqn(ab,5,2) /* p(n)/q(n) */

% = 13/8

? cfpnqn(ab,5,3)

% = 1/40 /* p(n)/q(n)-p(n-1)/q(n-1) */
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Basic Functions on Continued Fractions II

? a=[1,2-z,4*n-2];b=[2*z,z^2]; /* CF for e^z */

? cflimit(cfsubst([a,b],z,1))

% = 2.71828182845...

? cftype([a,b])

% = [[1, 4, 0, -1/2], [2, -16/z^2, 0, 0], 1]

The cfsubst command makes the substitution in the closures,
cflimit computes the limit, and cftype the speed of
convergence. The second vector gives
[k ,E ,D,P] = [2,−16/z2,0,0], so that

ez − p(n)
q(n)

∼ C
n!2(−16/z2)n

for some constant C (the first vector gives the asymptotics of
q(n), and the third is a convergence type number).
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Basic Functions on Continued Fractions III

The cfasymp command is more powerful and computes the
necessary unknown constants in the asymptotics:

? cfasymp(cfsubst([a,b],z,1))

% = [2.71828..., [1, 4, 0, -1/2, 0.342...],

[2, -16, 0, 0, 4.2698...], 1]

? lindep([-log(%[3][5]),1,log(Pi),log(2)])

% = [-1, -1, -1, 1]

We knew that e − p(n)/q(n) ∼ C/n!2(−16)n, and the above
command tells us that (numerically) C = (π/2)e. We could also
check that the constant 0.342... which occurs in the asymptotics
of q(n) is equal to 1/(eπ)1/2, so that q(n) ∼ n!4nn−1/2/(eπ)1/2.

Note that cftype can handle unknown variables as above, but
of course not cflimit or cfasymp.
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Basic Functions on Continued Fractions IV

Two useful functions to go back and forth between closures and
vectors are cfvectoclos and cfclostovec:

? [a,b]=[[1,2-z,4*n-2],[2*z,z^2]];ab=cfvectoclos([a,b])

% = [[(v1)->_cftoclos(v1,3,[1, -z + 2, 4*n - 2],4*n - 2),

(v1)->_cftoclos(v1,2,[2*z, z^2],z^2)]

/* A pair of closures */

? cfclostovec(ab)

% = [[1, -z + 2, 4*n - 2], [2*z, z^2]]

A simpler function cftopol gives only the generic entries (i.e.,
for n sufficiently large), but is useful since it applies to any
vector of closures.

? cftopol(ab,’n)

% = [[4*n - 2], [z^2]]
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Basic Functions on Continued Fractions V

Other useful functions are cfmul and cfsimplify. Example for
cfmul:

? ab4=cfsubst([a,b],z,1/4)

% = [[1, 7/4, 4*n - 2], [1/2, 1/16]]

? cftochar(ab4)

% = "1+1/2/(7/4+1/16/(6+1/16/(10+1/16/(14+1/16/(18+1/16/(22))))))"

/* Lots of fractions, CF for exp(1/4) */

? ab5=cfmul(ab4,4)

% = [[1, 7, 16*n - 8], [2, 1]]

? cftochar(ab5)

% = "1+2/(7+1/(24+1/(40+1/(56+1/(72+1/(88))))))"

/* Much neater, and equivalent CF for exp(1/4) */
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Basic Functions on Continued Fractions VI

? ab=[[1,1/n],[1]];cftochar(ab)

% = "1+1/(1+1/(1/2+1/(1/3+1/(1/4+1/(1/5+1/(1/6))))))"

/* CF for Pi/2 */

/* Again lots of fractions.

We could write ab2=cfmul(ab,n), but simpler: */

? ab2=cfsimplify(ab)

% = [[1, 1], [1, n^2 + n]]

? cftochar(ab2)

% = "1+1/(1+2/(1+6/(1+12/(1+20/(1+30/(1))))))"

/* Much neater */

Note that cfsimplify removes denominators (and additional
simplifications), but only as functions of the reserved variable n,
not of z, or scalar fractions, for this need to use cfmul explicitly.
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Period 2 Continued Fractions I

We have seen above the period 2 continued fraction for
f (z) = (1 + z) log(1 + z)/z:

f (z) = 1+z/(2+1.2z/(3+1.2z/(4+2.3z/(5+2.3z/(6+ ...)))))

This is entered in GP with 2-component vectors when
necessary:

? a=[n+1];b=z*[[1,2],[n*(n+1),(n+1)*(n+2)]]

Note that we would have preferred to write
b=z*[1,[n*(n+1),n*(n+1)]], but this (for now) is not
permitted by the package: in a or b, all entries must be either
scalars, or 2-component vectors. A mixture is not allowed (but a
can be scalar and b 2-component as above, or conversely), and
neither are N-component vectors for N ≥ 3.
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Period 2 Continued Fractions II

Such a CF is treated like the others, but:
The cfsimplify command contracts the CF by computing
the CF corresponding to p(2n)/q(2n), and then applies the
usual simplifications that it can find. The cfcontract

command can also do this on scalar-valued CF.
The cftype command giving the speed of convergence is
applied to the contracted CF, and then n is changed into
n/2. Thus, if p(2n + 1)/q(2n + 1) is asymptotically very
different from p(2n)/q(2n), care must be applied.
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Period 2 Continued Fractions III

Example:

? a=[n+1];b=z*[[1,2],[n*(n+1),(n+1)*(n+2)]];

/* CF for (1+z)\log(1+z)/z seen above */

? cftochar([a,b])

% = "1+z/(2+2*z/(3+2*z/(4+6*z/(5+6*z/(6+12*z/(7))))))"

? cd=cfsimplify([a,b])

% = [[1, (4*z + 8)*n^2 + (-2*z - 2)],

[3*z, -4*z^2*n^4 - 8*z^2*n^3 - z^2*n^2 + 3*z^2*n]]

? cftochar(cd,3)

%122 = "1+3*z/(2*z+6-10*z^2/(14*z+30-126*z^2/(34*z+70)))"

This “simplified” CF is not really simpler than the period 2 CF,
so in practice this is not recorded as an interesting CF.
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Convergence Acceleration I

This is perhaps the most spectacular aspect of the package.
Initial method due to Bauer–Muir. Recall that the nth tail of a
CF (which can be computed numerically by the command
cflimit([a,b],n)) is

ρ(n) = b(n)/(a(n+1)+b(n+1)/(a(n+2)+b(n+2)/(a(n+3)+· · · ))) ,

and that the limit S is given by

S =
p(n + 1) + ρ(n)p(n)
q(n + 1) + ρ(n)q(n)

.

Since trivially ρ(n)(a(n + 1) + ρ(n + 1))− b(n) = 0, if we
choose some r(n) such that

d(n) = r(n)(a(n + 1) + r(n + 1))− b(n)

is small, we can hope that
(p(n + 1) + r(n)p(n))/(q(n + 1) + r(n)q(n)) is a better
approximation to S.
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Convergence Acceleration II

Easy to write explicit formulas for (a′(n),b′(n)) so that the
corresponding CF is such that the partial quotients are
(p(n + 1) + r(n)p(n))/(q(n + 1) + r(n)q(n)): the formulas
involve d(n)/d(n − 1), with

d(n) = r(n)(a(n + 1) + r(n + 1))− b(n)

as above.

Ideal situation: by choosing r(n) suitably, make d(n) a nonzero
constant, but even otherwise can be useful. Since a(n), b(n)
polynomials, choose r(n) a polynomial with unknown
coefficients and solve for each by decreasing degree (no need
for Gröbner bases, only linear or quadratic equations).
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(p(n + 1) + r(n)p(n))/(q(n + 1) + r(n)q(n)): the formulas
involve d(n)/d(n − 1), with

d(n) = r(n)(a(n + 1) + r(n + 1))− b(n)

as above.

Ideal situation: by choosing r(n) suitably, make d(n) a nonzero
constant, but even otherwise can be useful. Since a(n), b(n)
polynomials, choose r(n) a polynomial with unknown
coefficients and solve for each by decreasing degree (no need
for Gröbner bases, only linear or quadratic equations).
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Convergence Acceleration III

When a(n) is of degree less than equal to 2 and b(n) less than
or equal to 4, almost always possible. When a(n) has degree 3
and b(n) degree 6, possible in some cases. In higher degree
very rare, but method can be modified.

Depending on the five rates of convergence, can see if we
obtain acceleration using r(n) a polynomial with rational
coefficients (assuming a(n) and b(n) same assumptions):

Polynomial convergence: always possible, usually changes
P into P + 2, most useful since convergence slow.
Exponential convergence: always possible if E is rational,
does not change E but again P into P + 2. Less useful
since rapid convergence, but essential for Apéry’s method.
Subexponential convergence: never possible, but can give
new CF with same convergence.
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The cfbauer Command I

All this is done by the command cfbauer, which outputs
[a′(n),b′(n), r(n),d(n)] with flag 1, and only [a′(n),b′(n)] with
the default flag 0. Slight subtlety: the indices of the new CF are
shifted by 1 compared to the initial one, compensate by
contracting the first 2 coeffs, done by cfbauer.

? ab=cfclostovec(cffromser(n->n^3,n->n^3))

% = [[0, 2*n^3 - 3*n^2 + 3*n - 1], [1, -n^6]]

/* Trivial CF for zeta(3) */

? cftype(ab)[2]

% = [0, 1, 0, 2] /* Convergence in C/n^2 */

? abrd1=cfbauer(ab,1)

% = [[1, 2*n^3 - 3*n^2 + 11*n - 5], [1, -n^6],

[1, -n^3 + 2*n^2 - 2*n + 1], [0, 1]]

/* Use r(n)=-n^3+2*n^2-2*n+1 to accelerate, get d(n)=1 */

? ab1=abrd1[1..2];cftype(ab1)[2]

% = [0, 1, 0, 6] /* Convergence in C/n^6 */
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The cfbauer Command II

We can continue as long as we like:

? ab2=cfbauer(ab1)

% = [[9/8, 2*n^3 - 3*n^2 + 27*n - 13], [1, -n^6]]

? cftype(ab2)[2]

% = [0, 1, 0, 10] /* Convergence in C/n^10 */

This iteration, followed by a diagonal process, is the basis for
the cfapery command.

The above was cfbauer applied to a CF with polynomial
convergence. We will see below an example of an application
to a CF with exponential convergence: the exponent stays the
same, but the polynomial part increases as above, and the
Apéry acceleration will increase the exponent.
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The cfbauer Command III

Finally, an example of cfbauer applied to subexponential
convergence: no acceleration at all, but a new CF. Here is a
beautiful CF:∫ ∞

0

e−t

t + 1
dt = 1/(2− 12/(4− 22/(6− 32/(8− 42/(10− · · · )))))

Speed of convergence 2πe/e4
√

n.

Applying cfbauer, we arrive at the new CF:∫ ∞
0

e−t

t + 1
dt = 1−1/(3−1.2/(5−2.3/(7−3.4/(9−4.5/(10−· · · )))))

exactly the same speed of convergence. Of course we can
iterate.
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Apéry Acceleration I

We have seen that the cfbauer command can be iterated. This
is the basis of Apéry acceleration, given in the package as
cfapery. Starting from a CF (a(n),b(n),p(n),q(n)) we set
(a(n,0),b(n,0),p(n,0),q(n,0)) = (a(n),b(n),p(n),q(n)), and
denote by (a(n, l),b(n, l),p(n, l),q(n, l)) the l th CF obtained by
successive Bauer–Muir accelerations using (r(n, l),d(n, l)). We
thus obtain two-dimensional arrays, all linked by 3-term linear
recursions, and hopefully with not too complicated coefficients
(in particular, if possible, with (a(n, l),b(n, l), r(n, l),d(n, l))
polynomials in n and l).

The game then consists in traveling in this array as one likes.
Ideal acceleration would be in traveling along the diagonal
l = n: however, complicated coefficients. Instead, travel along a
staircase either above or below the diagonal.
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Apéry Acceleration II

Everything explicit, except for the initial terms. The cfapery

command returns the accelerated CF (and if desired the
two-dimensional arrays), but since the initial terms may not be
correct, the limit will be of the form (aS + b)/(cS + d) with
small integers (a,b, c,d), where S is the limit of the initial CF.

The command fracdep (analogous to lindep and algdep)
finds these small integers, and it is then trivial to modify the CF
output by cfapery to obtain one which converges to S.
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Examples of the cfapery Command I

First, the “canonical” example:

? A = cfclostovec(cffromser(n->n^3,n->n^3))

% = [[0, 2*n^3 - 3*n^2 + 3*n - 1], [1, -n^6]]

/* Naive continued fraction for zeta(3),

term by term from series. */

? B = cfsimplify(cfapery(A))

% = [[0, 34*n^3 - 51*n^2 + 27*n - 5], [6, -n^6]]

/* Apery works, but miraculously

cfsimplify gives something simple */

? cflimit(B)-zeta(3)

% = 0.E-38 /* No need for fracdep */

? cftype(B)[2]

% = [0, 1153.999..., 0, 0]

/* Very fast convergence in (1+sqrt(2))^(-8*n) */
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Examples of the cfapery Command II

Here is a more complicated and spectacular example:

? ab=[[1/2,7*n-5],[1,-4*n*(3*n-2)]];cftype(ab)[2]

% = [0, 4/3, 0, 5/3]

/* Continued fraction for 2^(1/3), exponential convergence

in C/(4/3)^nn^(5/3). Since 4/3 rational, try apery */

? AB=cfapery(ab)

% = [[[1/2,6],[8*n,8*n+4]],

[[1,-20],[-12*n^2+8*n,-12*n^2-32*n-20]]]

? cftype(AB)[2]

% = [0, -3, 0, 0]

/* Apery works, faster exp. conv. in C/(-3)^n */

? AB2=cfsimplify(AB)

% = [[1/2, 28, 40*n - 20], [8, -144*n^2 + 64]]

? AB2=cfmul(AB2,1/4)

% = [[1/2, 7, 10*n - 5], [2, -9*n^2 + 4]]

/* Simplification much simpler, exp. conv. in C/9^n */

Henri Cohen A Pari/GP Package for Continued Fractions



Examples of the cfapery Command II

Here is a more complicated and spectacular example:

? ab=[[1/2,7*n-5],[1,-4*n*(3*n-2)]];cftype(ab)[2]

% = [0, 4/3, 0, 5/3]

/* Continued fraction for 2^(1/3), exponential convergence

in C/(4/3)^nn^(5/3). Since 4/3 rational, try apery */

? AB=cfapery(ab)

% = [[[1/2,6],[8*n,8*n+4]],

[[1,-20],[-12*n^2+8*n,-12*n^2-32*n-20]]]

? cftype(AB)[2]

% = [0, -3, 0, 0]

/* Apery works, faster exp. conv. in C/(-3)^n */

? AB2=cfsimplify(AB)

% = [[1/2, 28, 40*n - 20], [8, -144*n^2 + 64]]

? AB2=cfmul(AB2,1/4)

% = [[1/2, 7, 10*n - 5], [2, -9*n^2 + 4]]

/* Simplification much simpler, exp. conv. in C/9^n */

Henri Cohen A Pari/GP Package for Continued Fractions



Examples of the cfapery Command II

Here is a more complicated and spectacular example:

? ab=[[1/2,7*n-5],[1,-4*n*(3*n-2)]];cftype(ab)[2]

% = [0, 4/3, 0, 5/3]

/* Continued fraction for 2^(1/3), exponential convergence

in C/(4/3)^nn^(5/3). Since 4/3 rational, try apery */

? AB=cfapery(ab)

% = [[[1/2,6],[8*n,8*n+4]],

[[1,-20],[-12*n^2+8*n,-12*n^2-32*n-20]]]

? cftype(AB)[2]

% = [0, -3, 0, 0]

/* Apery works, faster exp. conv. in C/(-3)^n */

? AB2=cfsimplify(AB)

% = [[1/2, 28, 40*n - 20], [8, -144*n^2 + 64]]

? AB2=cfmul(AB2,1/4)

% = [[1/2, 7, 10*n - 5], [2, -9*n^2 + 4]]

/* Simplification much simpler, exp. conv. in C/9^n */

Henri Cohen A Pari/GP Package for Continued Fractions



Example of the cfapery Command III

/* Since 9 rational, try apery again */

? AB3=cfapery(AB2)

% = [[[1/2,4],[18*n-9/2,18*n+9/2]],

[[2,7/4],[-9*n^2+4,-9*n^2-9*n+7/4]]]

? cftype(AB3)[2]

% = [0, -33.97..., 0, 0]

/* Apery works again, even faster exp. conv. in

C/(-(1+sqrt(2))^4)^n */

? AB4=cfmul(AB3,2)

% = [[[1/2,8],[36*n-9,36*n+9]],

[[4,7],[-36*n^2+16,-36*n^2-36*n+7]]]

/* limit is a Mobius transform of 2^(1/3), we use

fracdep to find it: */
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Example of the cfapery Command IV

? fracdep(cflimit(AB4),2^(1/3))

% = (-10*x - 3)/(12*x - 22)

? %+10/12

% = -32/(18*x - 33)

? cftochar(AB4)

% = "1/2+4/(8+7/27-..."

? -10/12-32/(-33+18*(1/2+4/(8+x)))

% = (x + 13)/(2*x + 10)

? %-1/2

% = 4/(x + 5)

/* Thus, we set */

? AB5=[[[1/2,5],[36*n-9,36*n+9]],

[[4,7],[-36*n^2+16,-36*n^2-36*n+7]]]

? cflimit(AB5)-2^(1/3)

% = 0.E-38
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The Dictionary I

Exploring the literature, using the package, making systematic
searches, and applying systematically Apéry acceleration
whenever possible, I have compiled a list of almost 300
continued fractions of polynomial type (i.e., a(n) and b(n)
polynomials of period 1 or 2 for n sufficiently large) with rational
coefficients, both for specific real numbers, and for elementary
and special functions. Several observations:
•With only 1 or 2 exceptions, b(n) is always a product of linear
factors over Q (or Q(i) when z has been changed into iz).
• There exist CF for π, π/

√
3, and π/

√
2, but I know of no other

e.g., for π/
√

d with d > 3 squarefree.
• There exist CF for π2, L(χ−4,2), and L(χ−3,2), but no other
“periods of degree 2” or divided by some

√
d .

• There exist only a few CF for “periods of degree 3” (π3,
π3/
√

3, and ζ(3) and no others), and a single one of degree 4
for π4 that I found in 1980 with G. Rhin. None in higher degree.
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The Dictionary II

Challenge: it is usually easy to guess numerically the constants
C entering into the asymptotics. I have been unable to do so for
the very first CF:

? A=[[1/2,7*n-5],[1,-4*n*(3*n-2)]]; cflimit(A)^3

% = 2.00000000000000000000000000000000 /* So A=2^(1/3) */

? cfasymp(A)[3]

% = [0, 4/3, 0, 5/3, 2.370194...]

/* Convergence in C/((4/3)^nn^(5/3) with C=2.37... */

/* What is C ? */
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