The particular case of cyclotomic fields when computing unit groups by quantum algorithms

Razvan Barbulescu

CNRS, Institut de mathémathiques de Bordeaux

Joint work with:
Adrien Poulalion
(X, Corps des Mines)

Plan of the talk

- Reducing the unit group computations to the hidden subgroup problem - The continuous hidden subgroup problem - The particular case of cyclotomic fields

Shor's algorithms (1/2)

Hidden subgroup problem (HSP) and its continuous version (CHSP)

- HSP. Assume that $f: \mathbb{Z}^{m} \rightarrow \mathbb{C}^{k}$ is such that there exists a lattice $L \subset \mathbb{Z}^{n}$,

$$
\forall \ell \in L, \quad f(x+\ell)=f(x) .
$$

Given an algorithm to compute f, find L.

- CHSP : same definition with $f: \mathbb{R}^{m} \rightarrow \mathbb{C}^{k}$ and additional conditions on f.

History of HSP in quantum algorithms for number theory

- 1994 Simon : polynomial time quantum algorithm to solve HSP
- 1994 Shor : reduce factoring and DLP in abelian groups to HSP

Shor's algorithms (2/2)

Shor's factoring and DLP algorithms

- When factoring N, take a random $a \in(\mathbb{Z} / N)^{*}$. The period of $\left(\begin{array}{rlll}f: & \mathbb{Z} & \rightarrow & \mathbb{C} \\ i & \mapsto & a^{i}\end{array}\right)$ is the order of a and, with high probability, the order of $(\mathbb{Z} / N)^{*}$.
- If $N=p q$, knowing the order $(p-1)(q-1)$ of $(\mathbb{Z} / N)^{*}$ is equivalent to knowing p and q. For general N,
- Bach gave a probabilitic reduction.
- Assume every element of a group G is represented by an element of \mathbb{C}^{k}. When computing $\log _{g} h$, the function $\left(\begin{array}{rl}f: \mathbb{Z}^{2} & \rightarrow \mathbb{C}^{k} \\ (i, j) & \mapsto g^{i} h^{j}\end{array}\right)$ has as period set the lattice generated by $(\# G, 0),(0, \# G)$ and $\left(\log _{g} h,-1\right)$.

History

History of HSP in quantum algorithms for number theory

- 1994 Simon: polynomial time quantum algorithm to solve HSP
- 1994 Shor: reduce factoring and DLP in abelian groups to HSP
- 2002 Hallgren: reduce \mathcal{O}_{K}^{*} when K is quadratic real to CHSP with $n=2$
- 2005 Schmidt and Vollmer || Hallgren: reduce $\mathrm{Cl}(K)$ in fixed degree to HSP
- 2014 Eisenträger, Hallgren, Kitaev, Song: reduce \mathcal{O}_{K}^{*} to CHSP
- 2014 Campbel, Groves, Shepherd (Soliloquy): non peer-reviewed claim to reduce $\mathrm{Cl}(K)$ of arbitrary degree to HSP
- 2014 Bernstein: blog post stating that the Soliloquy talk was false
- 2015 Biasse and Song: proof that the reduction of $\mathrm{Cl}(K)$ to HSP is false
- 2016 Biasse and Song: reduction of $\mathrm{Cl}(K)$ to CHSP
- 2019 den Boer, Ducas, Fehr: complete proof that CHSP is quantum polynomial time and precise analysis of qubits requirements

History

History of HSP in quantum algorithms for number theory

- 1994 Simon: polynomial time quantum algorithm to solve HSP
- 1994 Shor: reduce factoring and DLP in abelian groups to HSP
- 20022007 Hallgren: reduce \mathcal{O}_{K}^{*} when K is quadratic real to CHSP with $n=2$
- 2005 Schmidt and Vollmer || Hallgren: reduce $\mathrm{Cl}(K)$ in fixed degree to HSP
- 20142019 Eisenträger, Hallgren, Kitaev, Song: reduce \mathcal{O}_{K}^{*} to CHSP and CHSP
- : non peer-reviewed claim to reduce $\mathrm{Cl}(\mathrm{K})$ of arbitrary degree to HSP
- 2014 Bernstein: blog post stating that the above claim is false
- 20152019 Biasse and Song: proof that the reduction of $\mathrm{Cl}(K)$ to HSP is false
- 2016 Biasse and Song: reduction of $\mathrm{Cl}(K)$ to CHSP
- 2019 den Boer, Ducas, Fehr: complete proof that CHSP is quantum polynomial time and precise analysis of qubits requirements

History

History of HSP in quantum algorithms for number theory

- 1994 Simon: polynomial time quantum algorithm to solve HSP
- 1994 Shor: reduce factoring and DLP in abelian groups to HSP
- 20022007 Hallgren: reduce \mathcal{O}_{K}^{*} when K is quadratic real to CHSP with $n=2$
- 2005 Schmidt and Vollmer || Hallgren: reduce $\mathrm{Cl}(K)$ in fixed degree to HSP
- 20142019 Eisenträger, Hallgren, Kitaev, Song: reduce \mathcal{O}_{K}^{*} to CHSP and CHSP
- $:$ non peer-reviewed claim to reduce $\mathrm{Cl}(\mathrm{K})$ of arbitrary degree to HSP
- 2014 Bernstein: blog post stating that the above claim is false
- 20152019 Biasse and Song: proof that the reduction of $\mathrm{Cl}(K)$ to HSP is false
- 2016 Biasse and Song: reduction of $\mathrm{Cl}(K)$ to CHSP
- 2019 den Boer, Ducas, Fehr: complete proof that CHSP is quantum polynomial time and precise analysis of qubits requirements

> den Boer et al. proposed a list of open questions

Plan of the talk

- Reducing the unit group computations to the hidden subgroup problem
- The continuous hidden subgroup problem
- The particular case of cyclotomic fields

Some definitions on lattices

Definitions

- $\operatorname{SVP}(L)$: the problem of finding the shortest vector;
- λ_{1} is the lenght of the shortest vector b_{1}, for $k \geq 1, \lambda_{k+1}$ is the lenght of the shortest vector b_{k} not spanned by $\left(b_{1}, \ldots, b_{k}\right)$;
- $\operatorname{CVP}(x, L)$: the problem of finding the closes vector;
- $\operatorname{BDD}\left(x, L, \delta \lambda_{1}\right)$: it is CVP with the promise to be at distance $\delta \lambda_{1}$ from the lattice.

Some properties of lattices

Complexity

- SVP and CVP are believed exponential time on classical and quantum computers
- Babai (1985) solves BDD in polynomial time when δ is very small, but in general it is exponential time.

Canonical basis

- There is no canonical basis of a lattice, so one cannot apply period-finding algorithms if the image is a lattice.
- Lemma: When $\operatorname{dim} L=2$, let v_{1} and v_{2} be such that $\left\|v_{i}\right\|=\lambda_{i}$. Then the datum $\left(v_{1}, v_{2}\right)$ is a canonical representation and can be computed in polynomial time using Gauss' algorithm.
- in a general lattice L of dimension n, the vectors of lenght $\lambda_{1}, \ldots, \lambda_{n}$ are unique up to sign. This suggests a unique representation of lattices in $\mathbb{C}^{n^{2}}$ but it requires to solve SVP.
- Hence $\mathrm{Cl}(K)$ and \mathcal{O}_{K}^{*} are easier in fixed degree n because one has canonical representations of lattices of \mathbb{R}^{n}.

Prerequisites about lattices

Definition and properties of the dual of a lattice

- $L^{*}:=\left\{y \in \mathbb{R}^{m} \mid \forall x \in L, x \cdot y \in \mathbb{Z}^{n}\right\}$;
- $\lambda_{1}^{*}:=\lambda_{1}\left(L^{*}\right)$
- if L is generated by the rows of a matrix B then L^{*} is generated by the rows of $\left(B^{t}\right)^{-1}$; in particular $\operatorname{det} L^{*}=1 / \operatorname{det} L$;
- if $M \subset L$ then $L^{*} \subset M^{*}$ and $[L: M]=\left[M^{*}: L^{*}\right]$.

Modeling the quantum part of the algorithm

Definition (Dual lattice sampler)

Let $c: L^{*} \rightarrow \mathbb{C}$ be a map such that $\sum_{\ell^{*} \in L^{*}}\left|c_{\ell^{*}}\right|^{2}=1$. Let ϵ and δ be two parameters. An algorithm is a dual lattice sampler of parameters $1 / 4>\eta>0$ and $1 / 2>\delta>0$ if it outputs a vector $x \in \mathbb{R}^{m}$ such that, for any finite set $S \subset L^{*}$, one has

$$
\operatorname{Prob}\left(y \in \bigcup_{\ell^{*} \in S} B\left(\ell^{*}, \delta \lambda_{1}^{*}\right)\right) \geq \sum_{\ell^{*} \in S}\left|c_{\ell^{*}}\right|^{2}-\eta
$$

It means morally that the probability of drawing a vector close to $I^{*} \in L^{*}$ is approximately $\left|c_{\ell^{*}}\right|^{2}$: these quantities act as a probability distribution. We add also two technical conditions for the map c :

1. Uniformity property : there exists $\varepsilon \leq 1 / 4$ such that, for every strict sublattice $N \subsetneq L^{*}$:

$$
\sum_{\ell^{*} \in N}\left|c_{\ell^{*}}\right|^{2}<\frac{1}{2}+\varepsilon
$$

2. Concentration property : There exists $R=R(m)$ and $0<p<\frac{1}{2}-\varepsilon-\eta$ such that:

$$
\sum_{\left|\ell^{*}\right|>R}\left|c_{\ell^{*}}\right|^{2}<p
$$

Preparation: random vectors to generate a lattice

Examples

- Bost and Mestre (1988) : complex AGM to compute periods in genus 1 and 2
- Hafner and Buchmann (1989) : classical class group
- den Boer et al. (2019) : CHSP

Lemma (dBDF 2019)

We note $k=\alpha\left(m+m \log _{2} R+\log _{2}(\operatorname{det} L)\right)$, for an absolute constant $\alpha>1$. Let $\widetilde{y_{1}}, \widetilde{y_{2}}, \ldots, \widetilde{y_{k}}$ be the first k vectors output by a dual basis sampler. For $i=\overline{1, k}$ put $y_{i}=\operatorname{CVP}\left(\widetilde{y}_{i}, L\right)$. Then for any value of the absolute constant $\alpha>2$ we have

$$
\operatorname{Prob}\left(y_{1}, \ldots, y_{k} \text { generate } L\right) \geq 1-c^{m}
$$

where $c<1$ is an explicitly computable constant.

The CHSP algorithm

Input τ and approximations at one bit of precision of R, λ_{1}^{*} and $\operatorname{det} L$; Output a basis of L with absolute error τ
1: $\left.k \leftarrow m \log _{2} R-\log _{2}(\operatorname{det} L)\right) ; \delta=\frac{\left(\lambda_{1}^{*}\right)^{2} \operatorname{det} L^{*}}{2^{O(m k)}\|B\|_{\infty}^{m+1}} \tau$
2: for $i=1,2, \ldots, k$ do
\triangleright Step 1 - Quantum
$\widetilde{y}_{i} \leftarrow$ output(dual lattice sampler (δ))
pass
5: end for
6: Use Buchmann-Pohst algorithm on $\left(\widetilde{y_{1}}, \ldots, \widetilde{y_{k}}\right)$ to find a basis $\left(y_{1}, \ldots, y_{m}\right)$ of L^{*}; call B the square matrix they form
\triangleright Step 2 - Classical
7: Output $\left(B^{-1}\right)^{t}$ (here B is the matrix a basis of L^{*}).

Buchmann-Pohst: extract a basis from the approximation of a generating set $(1 / 3)$

The case $\operatorname{dim} L=1$: given $\widetilde{k \alpha}$ and $\widetilde{\ell \alpha}$ with absolute error δ, find $\alpha \in \mathbb{R}$

- Theorem (Dirichlet): For any $\beta \in \mathbb{R} \backslash \mathbb{Q}$ there exists a sequence $\left(p_{n}, q_{n}\right)_{n}$ such that $q_{n} \rightarrow \infty$ and

$$
\left|\beta-\frac{p_{n}}{q_{n}}\right|<\frac{1}{q_{n}^{2}} .
$$

- Let p / q be a Dirichlet approximation of $\widetilde{k \alpha} / \widetilde{\ell \alpha}$. Put $\delta_{k}:=|k \alpha-\widetilde{k \alpha}|$ and similarly for δ_{ℓ}. If $\max \left(\delta_{k}, \delta_{\ell}\right)<\frac{1}{\alpha(p+q)}$ and $q \geq \ell$ then

$$
p / q=k / \ell .
$$

Indeed,

$$
\left|\frac{k \alpha+\delta_{k}}{\ell \alpha+\delta_{\ell}}-\frac{p}{q}\right|<\frac{1}{q^{2}}
$$

implies that $\frac{1}{q^{2}}>\frac{k q-p \ell}{q \ell}$, which is possible only if $k q-p \ell=0$.

Buchmann-Pohst: extract a basis from the approximation of a generating set $(2 / 3)$

The general case

Theorem (Buchmann-Pohst)

If $q \geq q(L)$, an explicite expression depending only on L, the LLL-reduction of the above matrix is such that

- $\varepsilon_{1}, \ldots, \varepsilon_{k-n}$ have norm bounded by an explicit constant;
- $m_{1}, \ldots, m_{k-n} \in L^{*}$
- $2^{-q}\left(\widetilde{c_{1}}, \ldots, \widetilde{c_{n}}\right)$ is a an approximation of a basis of L.

Buchmann-Pohst: extract a basis from the approximation of a generating set (3/3)

The particular case of $\mathbb{Q}\left(\zeta_{n}\right)$ when $4 \mid \varphi(n)$

- \mathcal{O}_{K}^{*} is a $\mathbb{Z}[\operatorname{Gal}(K)]$-module, in particular a $\mathbb{Z}[i]$-module
- Poulalion: Buchmann-Pohst extends to $\mathbb{Z}[i]$

LLL over \mathbb{Z} vs. LLL over $\mathbb{Z}[i]$

- Fieker-Stehlé (2010): to reduce a $\mathbb{Z}[i]$-module one can forget the $\mathbb{Z}[i]$-structure, \mathbb{Z}-reduce and retrieve the $\mathbb{Z}[i]$-structure;
- Kim-Lee (2017): LLL over $\mathbb{Z}\left[\zeta_{k}\right]$ works in practice even when $\mathbb{Z}\left[\zeta_{k}\right]$ is not Euclidean;
- Camus (2018): implementation of LLL over $\mathbb{Z}[i]$ faster than the best implementation of LLL over \mathbb{Z}.

Space complexity of CHSP $(1 / 2)$

Definition (Continuous Hidden Subgroup Problem - CHSP)

Let $f: \mathbb{R}^{m} \rightarrow \mathcal{S}$, where $\mathcal{S}=\oplus_{i \in\{0,1\}^{n}} \mathbb{C}|i\rangle$ is the space of states of n qubits.
The function f is an (a, r, ε)-oracle hiding the full-rank lattice L if and only if it verifies the following technical conditions:

1. L is the period of f, i.e. $\forall x \forall \ell \in L, f(x+\ell)=f(x)$. (periodicity)
2. The function f is a-Lipschitz. (Lipschitz condition)
3. $\forall x, y \in \mathbb{R}^{m}$ such that $\operatorname{dist}(x-y, L) \geq r$, we have $|\langle f(x) \mid f(y)\rangle| \leq \varepsilon$. (strong periodicity)
Given an efficient quantum algorithm to compute f, compute the hidden lattice of periods L.

Representing a lattice in \mathbb{C}^{k} with $k<\infty$ (EHKS 2014)

- (straddle encoding):

$$
\left|\operatorname{str}_{\nu}(x)\right\rangle=\cos \left(\frac{\pi}{2} t\right)|k\rangle+\sin \left(\frac{\pi}{2} t\right)|k+1\rangle, \text { where } k=\lfloor x / \nu\rfloor, t=x / \nu-k
$$

- $\left|\operatorname{str}_{n, \nu}\left(x_{1}, \ldots, x_{n}\right)\right\rangle=\otimes_{i=1}^{n}\left|\operatorname{str}_{\nu}\left(x_{i}\right)\right\rangle$
- $f(L)=\gamma^{-1 / 2} \sum_{x \in L} e^{-\pi\|x\|^{2} / s}\left|\operatorname{str}_{n, \nu}(x)\right\rangle$ with $\gamma=\sum_{x \in L} e^{-2 \pi\|x\|^{2} / s^{2}}$.

Space complexity of CHSP $(2 / 2)$

Theorem (dBDF 2019)

CHSP can be solved with a quantum algorithm with the following complexities:

- time: $O\left(k m^{2} Q^{2}\right)$
- space: $m Q+n$ with

$$
\begin{aligned}
Q & =O(m k)+O\left(\log \frac{a}{\lambda_{1}^{*}}\right)+O\left(\log \frac{1}{\lambda_{1}^{*} \tau}\right) \\
k & =O\left(m \log \left(\sqrt{m} a(\operatorname{det} L)^{1 / m}\right)\right) .
\end{aligned}
$$

k is the expectancy of the number of random vectors to generate L^{*}.

Reduction of the \mathcal{O}_{K}^{*} computation to CHSP (1/2)

Lemma (The example of totally real fields)

Let $K \subset \mathbb{R}$ be an embedding of K. Then the function $\left(\begin{array}{rlll}f: & \mathbb{R} & \rightarrow \mathcal{P}(\mathbb{R}) \\ x & \mapsto & e^{x} \mathcal{O}_{K}\end{array}\right)$ has the period $\log \mathcal{O}_{K}^{*}$.

Proof.

$$
\begin{aligned}
e^{x} \mathcal{O}_{K}=e^{y} \mathcal{O}_{K} & \Leftrightarrow e^{x-y} \mathcal{O}_{K}=\mathcal{O}_{K} \\
& \Leftrightarrow e^{x-y} \in K \text { and }\left\langle e^{x-y}\right\rangle=\mathcal{O}_{K} \\
& \Leftrightarrow \pm(x-y) \in \log \left(\mathcal{O}_{K}^{*}\right)
\end{aligned}
$$

Reduction of the \mathcal{O}_{K}^{*} computation to CHSP (1/2)

Lemma (The example of totally real fields)

Let $K \subset \mathbb{R}$ be an embedding of K. Then the function $\left(\begin{array}{rlll}f: & \mathbb{R} & \rightarrow \mathcal{P}(\mathbb{R}) \\ & x & \mapsto & e^{\times} \mathcal{O}_{K}\end{array}\right)$ has the period $\log \mathcal{O}_{k}^{*}$.

Modify f to be used in CHSP

- $\log \mathcal{O}_{K}^{*}$ is not discret (not a lattice). Let $K \subset \mathbb{R}$ be an embedding and set $\sigma_{1}=\mathrm{id}$. Let $\sigma_{1}, \sigma_{r_{1}}$ be field automorphisms of \mathbb{R} which extend the real embeddings of K and let $\tau_{r_{1}+i}, \overline{\tau_{r_{1}+1}}, \ldots$ be some complex embeddings of \mathbb{R} which extend the complex embeddings of K. Put $\sigma_{r_{1}+i}=\sqrt{\left|\tau_{r_{1}+i}\right|}$ and $r=r_{1}+r_{1}-1$.

$$
\left(\begin{array}{cccc}
f: & \mathbb{R}^{r_{1}+r_{2}} & \rightarrow & \mathcal{P}(\mathbb{R})^{r+1} \\
& \left(x_{1}, x_{2}, \ldots, x_{r+1}\right) & \mapsto & \left(e^{x_{1}} \sigma_{1}\left(\mathcal{O}_{K}\right), e^{x_{2}} \sigma_{2}\left(\mathcal{O}_{K}\right), \ldots, e^{x_{r+1}} \sigma_{r+1}\left(\mathcal{O}_{K}\right)\right)
\end{array}\right) \text { has }
$$

the period $\log \mathcal{O}_{K}^{*}$.

- encode any lattice of \mathbb{R}^{r+1}, e.g. $e^{x} \mathcal{O}_{K}$, by $\mathbb{R}^{q} \subset \mathbb{C}^{q}$ for a large enough q.

One actually finds $\left\{u \bar{u} \mid u \in \mathcal{O}_{K}^{*}\right\}$

- if only wants the regulator or $\mathcal{O}_{K}^{*} /\left(\mathcal{O}_{K}^{*}\right)^{\ell}$ for a large prime ℓ then we are done.
- For all \mathcal{O}_{K}^{*} use n embeddings. For the roots of unity one factors the discriminant. ${ }^{a}$

[^0]
Space complexity of the algorithm for \mathcal{O}_{K}^{*}

EHKS 2014 long version (2019)

- $m=O(n)$ and $n=O(m)$ where $n=\operatorname{deg} K$
- Theorem 5.5 and D.4: f is an $\left(a=\sqrt{\pi / 4} c\left(\sqrt{m} / \lambda_{1}\right)^{n}+1, R=O\left(m^{2}+m \log D\right), \varepsilon=3 / 4\right)$-oracle for CHSP
- Theorem B.3: $\lambda_{1} \geq 1 / 2$
- Equation (D.11): $\lambda_{1}^{*}=\Omega(1 / \sqrt{m})$

Comparison between HSP and CHSP when computing \mathcal{O}_{K}^{*}

Notations: $m=O(n)=O(\operatorname{deg} K)$ and $D=$ disc K.

- When inserted in the dBDF space complexity we get

$$
\text { space }=O\left(m^{4} \log m+m^{3} \log D+m \log \tau\right)
$$

- For comparison, the space of HSP is dominated by that of HNF: Micianccio and Warinschi 2001 : space $(\mathrm{HNF})=O\left(m^{2} \log D\right)$.

Question: can we find particular cases without Buchmann-Pohst?

Plan of the talk

- Reducing the unit group computations to the hidden subgroup problem
- The continuous hidden subgroup problem
- The particular case of cyclotomic fields

Cyclotomic units

Definition

In $K=\mathbb{Q}(\zeta)$ with ζ an m th root of unity, the group of cyclotomic units is the subgroup C of \mathcal{O}_{K}^{*} generated by the roots of unity and $\zeta_{m}^{i}-1$ with $i \in \mathbb{N}$.

Properties whem $m=p^{e}$ (see e.g. Cramer, Ducas, Peikert, Regev 2015)

- (Whashington) C is generated by $\pm \zeta$ and

$$
\beta_{j}:=\frac{\zeta^{j}-1}{\zeta-1}
$$

with $j \in(\mathbb{Z} / m)^{*} /\{ \pm 1\}, j \neq 1$.

- (Whashington) $\left[\log \mathcal{O}_{K}^{*}: \log C\right]=h^{+}(m):=\mathrm{h}(\mathbb{Q}(\zeta+1 / \zeta))$.
- $(C D P R 15)^{a}$ We set $b_{j}=\log \beta_{j}$ where $\log =\left(\log \sigma_{1}, \log \sigma_{2}, \ldots, \log \sigma_{n}\right)$. Let $\left\{b_{j}^{*}\right\}_{j}$ be the dual basis of $\left\{b_{j}\right\}$. Then $\left\|b_{j}^{*}\right\|^{2}=\Omega\left(m^{-1} \log ^{3} m\right)$. and in particular

$$
1 / \lambda_{1}\left(M^{*}\right)=O\left(m / \log ^{3} m\right)
$$

[^1]$$
M:=\log C \text { is a sublatice of } L:=\log \mathcal{O}_{K}^{*}
$$

The checker-corrector (1/2)

When $\operatorname{CVP}\left(M^{*}\right)$ brings points in L^{*}
$M \subset L$ so $L^{*} \subset M^{*}$

If $d\left(x, L^{*}\right)<\frac{1}{2} \lambda_{1}\left(M^{*}\right)$ then $\operatorname{CVP}\left(x, M^{*}\right)$ returns a point of L^{*}.

The checker-corrector (1/2)

When $\operatorname{CVP}\left(M^{*}\right)$ brings points in L^{*}
$M \subset L$ so $L^{*} \subset M^{*}$

If $d\left(x, L^{*}\right)<\frac{1}{2} \lambda_{1}\left(M^{*}\right)$ then $\operatorname{CVP}\left(x, M^{*}\right)$ returns a point of L^{*}.
Do the quantum part in low percision and correct it before Buchmann-Pohst.

The checker-corrector (2/2)

Lemma

Let $M \subset L$ be a lattice generated by B_{M} (a matrix for L is not necessarily known). If $\widetilde{y} \in \mathbb{R}^{n}$ is such that $d\left(\widetilde{y}, L^{*}\right)<\frac{1}{2} \lambda_{1}\left(M^{*}\right)$ then one can solve $\operatorname{CVP}\left(\tilde{y}, L^{*}\right)$ in polynomial time.

Proof.

The following algorithm has a polynomial time complexity:

1. compute $\widetilde{z}:=B_{M}^{t} \tilde{y}$;
2. round $z=\left(z_{1}, \ldots, z_{n}\right):=\left(\left\lfloor\widetilde{z}_{1}\right\rceil, \ldots,\left\lfloor\tilde{z}_{n}\right\rceil\right) ;$ a
3. return $y:=\left(B_{M}^{t}\right)^{-1} z$.

The checker-corrector (2/2)

Lemma

Let $M \subset L$ be a lattice generated by B_{M} (a matrix for L is not necessarily known). If $\tilde{y} \in \mathbb{R}^{n}$ is such that $d\left(\widetilde{y}, L^{*}\right)<\frac{1}{2} \lambda_{1}\left(M^{*}\right)$ then one can solve $\operatorname{CVP}\left(\widetilde{y}, L^{*}\right)$ in polynomial time.

Proof.

The following algorithm has a polynomial time complexity:

1. compute $\widetilde{z}:=B_{M}^{t} \widetilde{y}$;
2. round $z=\left(z_{1}, \ldots, z_{n}\right):=\left(\left\lfloor\widetilde{z_{1}}\right\rceil, \ldots,\left\lfloor\tilde{z_{n}}\right\rceil\right) ;{ }^{a}$
3. return $y:=\left(B_{M}^{t}\right)^{-1} z$.

$$
\begin{aligned}
\|y-\widetilde{y}\| & =\left\|\left(B_{M}^{t}\right)^{-1}(z-\widetilde{z})\right\| \\
& \leq\left\|\left(B_{M}^{t}\right)^{-1}\right\|\|z-\widetilde{z}\|=\left\|B_{M^{*}}\right\|\|z-\widetilde{z}\| \\
& \leq \lambda_{1}\left(M^{*}\right) \cdot \frac{1}{2} .
\end{aligned}
$$

Let $y_{L}=\operatorname{CVP}\left(\widetilde{y}, L^{*}\right)$. Then

$$
\left\|y_{L}-y\right\| \leq\left\|y_{L}-\widetilde{y}\right\|+\|y-\widetilde{y}\|<\frac{1}{2} \lambda_{1}\left(M^{*}\right)+\frac{1}{2} \lambda_{1}\left(M^{*}\right)=\lambda_{1}\left(M^{*}\right) .
$$

Since $y_{L} \in L^{*} \subset M^{*}, y_{L}-y \in M^{*}$ so $y=y_{L}$.

[^2]
Solving CHSP in the cyclotomic case

Input τ and approximations at one bit of precision of R, λ_{1}^{*} and $\operatorname{det} L$;
Output a basis of L with absolute error τ
1: $\left.k \leftarrow m \log _{2} R-\log _{2}(\operatorname{det} L)\right) ; \delta=\frac{\left(\lambda_{1}^{*}\right)^{2} \operatorname{det} L^{*}}{2^{O(m k)}\|B\|_{\infty}^{m+1} \mp} \delta=\frac{1}{2} \lambda_{1}\left(M^{*}\right)$
2: for $i=1,2, \ldots, k$ do
\triangleright Step 1 - Quantum
$\widetilde{y}_{i} \leftarrow$ output(dual lattice sampler (δ))
4: \quad pass correct $\left(\widetilde{y_{1}}, \ldots, \widetilde{y_{k}}\right)$ from error $\frac{1}{2} \lambda_{1}\left(M^{*}\right)$ to error $\frac{\left(\lambda_{1}^{*}\right)^{2} \operatorname{det} L^{*}}{2 O(m)\|B\|_{\infty}^{m-1}} \tau$
5: end for
6: Use Buchmann-Pohst algorithm on $\left(\widetilde{y_{1}}, \ldots, \widetilde{y_{k}}\right)$ to find a basis $\left(y_{1}, \ldots, y_{m}\right)$ of L^{*};
call B the square matrix they form
7: Output $\left(B^{-1}\right)^{t}$ (here B is the matrix a basis of L^{*}).

Space complexity of the quantum step

- without the corrector: From slide "Space complexity":

$$
\text { space }-m \log \tau=O\left(m^{4} \log m+m^{3} \log D\right)=O\left(m^{4} \log m\right)=\widetilde{O}\left(m^{4}\right)
$$

because $D=\operatorname{disc}\left(\mathbb{Q}\left(\zeta_{m}\right)\right)=O\left(m^{m}\right)$.

- with the corrector:

$$
\text { space }-m \log \tau=O(m(\log \delta))=O\left(m \log \lambda_{1}\left(M^{*}\right)\right)=O\left(m^{2} / \log ^{3} m\right)=\widetilde{O}\left(m^{2}\right)
$$

A different point of view

Input τ and approximations at one bit of precision of R, λ_{1}^{*} and $\operatorname{det} L$;
Output a basis of L with absolute error τ
1: $\left.k \leftarrow m \log _{2} R-\log _{2}(\operatorname{det} L)\right) ; \delta=\frac{\left(\lambda_{1}^{*}\right)^{2} \operatorname{det} L^{*}}{2^{O(m k}\|B\|_{\infty}^{m+1}} \tau$
2: for $i=1,2, \ldots, k$ do $\quad \triangleright$ Step 1 - Quantum
3: $\quad \tilde{y}_{i} \leftarrow$ output(dual lattice sampler (δ))
4: pass correct $\left(\widetilde{y_{1}}, \ldots, \widetilde{y_{k}}\right)$ with an error small enough to obtain $\left(y_{1}, \ldots, y_{n}\right)$ with integer coordinates in a basis of M^{*}.
5: end for
6: Use Buchmann-Pohst algorithm on $\left(\tilde{y_{1}}, \ldots, \tilde{y}_{k}\right)$ to find a basis $\left(y_{1}, \ldots, y_{m}\right)$ of L^{*}; Compute a Hermite normal form (HNF) to obtain the exact value of $[L: M]$. \triangleright Step 2 - Classical
7: Output $\left(B^{-1}\right)^{t} \in \frac{1}{[L: M]} \operatorname{Mat}_{m}(\mathbb{Z})$, where $B \in \operatorname{Mat}_{m}(\mathbb{Z})$ is the matrix of $\left(y_{1}, \ldots, y_{n}\right)$ written in a basis of M^{*}.
\triangleright Step 3 - Classical

Instead of a complexity analysis

The time complexity of HNF is heuristic $O\left(m^{4}\right)$ so the decrease of precision is $\widetilde{O}\left(m^{4}\right)$. Hence HNF on cyclotomic fields is faster than CHSP on arbitrary fields.

Conclusion

Reduction of number theory problems to (C)HSP

- factoring and DLP in abelian groups: HSP
- \mathcal{O}_{K}^{*} and $\mathrm{Cl}(K)$ of fixed degree: HSP
- \mathcal{O}_{K}^{*} and $\mathrm{Cl}(K)$ of arbitrary degree: CHSP
- \mathcal{O}_{K}^{*} of cyclotomic fields: at least as fast as HSP

[^0]: ${ }^{a}$ Eisenträger et al. prove that if F has domain $G \times \mathbb{Z}^{k} \times \mathbb{R}^{m}$ and is continuous on \mathbb{R}^{m} one can construct a continuous function whose period is the same. (HSP reduces to CHSP)

[^1]: ${ }^{a}$ Cramer, Ducas, Peikert, Regev (2015) only treat the case $m=p^{e}$ but the general can be treated as in Lemma 3.5 of Cramer ducas Wesolowski (2021).

[^2]: ${ }^{\text {a }}$ If $d\left(\tilde{y}, L^{*}\right)<\frac{1}{4} \lambda_{1}\left(M^{*}\right)$ and $\|z-\tilde{z}\|>1 / 4$ we can discard \tilde{y}. The algoritms is a "checker".

