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Plan of the talk

I Reducing the unit group computations to the hidden subgroup problem

I The continuous hidden subgroup problem

I The particular case of cyclotomic fields
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Shor’s algorithms (1/2)

Hidden subgroup problem (HSP) and its continuous version (CHSP)

• HSP. Assume that f : Zm → Ck is such that there exists a lattice L ⊂ Zn,

∀` ∈ L, f (x + `) = f (x).

Given an algorithm to compute f , find L.

• CHSP : same definition with f : Rm → Ck and additional conditions on f .

History of HSP in quantum algorithms for number theory

• 1994 Simon : polynomial time quantum algorithm to solve HSP

• 1994 Shor : reduce factoring and DLP in abelian groups to HSP

• . . .
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Shor’s algorithms (2/2)

Shor’s factoring and DLP algorithms

• When factoring N , take a random a ∈ (Z/N)∗. The period of

(
f : Z → C

i 7→ ai

)
is the order of a and, with high probability, the order of (Z/N)∗.
• If N = pq, knowing the order (p − 1)(q − 1) of (Z/N)∗ is equivalent to

knowing p and q. For general N ,
• Bach gave a probabilitic reduction.

• Assume every element of a group G is represented by an element of Ck . When

computing logg h, the function

(
f : Z2 → Ck

(i , j) 7→ g ihj

)
has as period set the

lattice generated by (#G , 0), (0,#G ) and (logg h,−1).
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History

History of HSP in quantum algorithms for number theory

• 1994 Simon: polynomial time quantum algorithm to solve HSP

• 1994 Shor: reduce factoring and DLP in abelian groups to HSP

• 2002 Hallgren: reduce O∗K when K is quadratic real to CHSP with n = 2

• 2005 Schmidt and Vollmer ‖ Hallgren: reduce Cl(K ) in fixed degree to HSP

• 2014 Eisenträger, Hallgren, Kitaev, Song: reduce O∗K to CHSP

• 2014 Campbel, Groves, Shepherd (Soliloquy): non peer-reviewed claim to reduce
Cl(K ) of arbitrary degree to HSP

• 2014 Bernstein: blog post stating that the Soliloquy talk was false

• 2015 Biasse and Song: proof that the reduction of Cl(K ) to HSP is false

• 2016 Biasse and Song: reduction of Cl(K ) to CHSP

• 2019 den Boer, Ducas, Fehr: complete proof that CHSP is quantum polynomial
time and precise analysis of qubits requirements
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• 2016 Biasse and Song: reduction of Cl(K ) to CHSP

• 2019 den Boer, Ducas, Fehr: complete proof that CHSP is quantum polynomial
time and precise analysis of qubits requirements

den Boer et al. proposed a list of open questions
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Some definitions on lattices

Definitions

• SVP(L): the problem of finding the shortest vector;

• λ1 is the lenght of the shortest vector b1, for k ≥ 1, λk+1 is the lenght of the
shortest vector bk not spanned by (b1, . . . , bk);

• CVP(x , L): the problem of finding the closes vector;

• BDD(x , L, δλ1): it is CVP with the promise to be at distance δλ1 from the lattice.
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Some properties of lattices

Complexity

• SVP and CVP are believed exponential time on classical and quantum computers

• Babai (1985) solves BDD in polynomial time when δ is very small, but in general
it is exponential time.

Canonical basis

• There is no canonical basis of a lattice, so one cannot apply period-finding
algorithms if the image is a lattice.

• Lemma: When dim L = 2, let v1 and v2 be such that ‖vi‖ = λi . Then the datum
(v1, v2) is a canonical representation and can be computed in polynomial time
using Gauss’ algorithm.

• in a general lattice L of dimension n, the vectors of lenght λ1, . . ., λn are unique
up to sign. This suggests a unique representation of lattices in Cn2

but it requires
to solve SVP.

• Hence Cl(K ) and O∗K are easier in fixed degree n because one has canonical
representations of lattices of Rn.
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Prerequisites about lattices

Definition and properties of the dual of a lattice

• L∗ := {y ∈ Rm | ∀x ∈ L, x · y ∈ Zn};
• λ∗1 := λ1(L∗)

• if L is generated by the rows of a matrix B then L∗ is generated by the rows of
(B t)−1; in particular det L∗ = 1/ det L;

• if M ⊂ L then L∗ ⊂ M∗ and [L : M] = [M∗ : L∗].
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Modeling the quantum part of the algorithm

Definition (Dual lattice sampler)

Let c : L∗ → C be a map such that
∑

`∗∈L∗ |c`∗|2 = 1. Let ε and δ be two parameters.
An algorithm is a dual lattice sampler of parameters 1/4 > η > 0 and 1/2 > δ > 0 if it
outputs a vector x ∈ Rm such that, for any finite set S ⊂ L∗, one has

Prob

y ∈
⋃
`∗∈S

B(`∗, δλ∗1)

 ≥∑
`∗∈S

|c`∗|2 − η.

It means morally that the probability of drawing a vector close to l∗ ∈ L∗ is
approximately |c`∗|2 : these quantities act as a probability distribution. We add also
two technical conditions for the map c :

1. Uniformity property : there exists ε ≤ 1/4 such that, for every strict sublattice
N ( L∗ : ∑

`∗∈N

|c`∗|2 <
1

2
+ ε.

2. Concentration property : There exists R = R(m) and 0 < p < 1
2 − ε− η such

that : ∑
|`∗|>R

|c`∗|2 < p.
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Preparation: random vectors to generate a lattice

Examples

• Bost and Mestre (1988) : complex AGM to compute periods in genus 1 and 2

• Hafner and Buchmann (1989) : classical class group

• den Boer et al. (2019) : CHSP

Lemma (dBDF 2019)

We note k = α(m + m log2 R + log2(det L)), for an absolute constant α > 1. Let
ỹ1, ỹ2, . . . , ỹk be the first k vectors output by a dual basis sampler. For i = 1, k put
yi = CVP(ỹi , L). Then for any value of the absolute constant α > 2 we have

Prob(y1, . . . , yk generate L) ≥ 1− cm,

where c < 1 is an explicitly computable constant.
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The CHSP algorithm

Input τ and approximations at one bit of precision of R , λ∗1 and det L;
Output a basis of L with absolute error τ

1: k ← m log2 R − log2(det L)); δ = (λ∗1)
2 det L∗

2O(mk)‖B‖m+1
∞
τ

2: for i = 1, 2, . . . , k do . Step 1 - Quantum
3: ỹi ← output(dual lattice sampler(δ))
4: pass
5: end for
6: Use Buchmann-Pohst algorithm on (ỹ1, . . . , ỹk) to find a basis (y1, . . . , ym) of L∗;

call B the square matrix they form . Step 2 - Classical
7: Output (B−1)t (here B is the matrix a basis of L∗). . Step 3 - Classical
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Buchmann-Pohst: extract a basis from the approximation
of a generating set (1/3)

The case dim L = 1: given k̃α and ˜̀α with absolute error δ, find α ∈ R
• Theorem (Dirichlet): For any β ∈ R\Q there exists a sequence (pn, qn)n such that
qn →∞ and ∣∣∣∣β − pn

qn

∣∣∣∣ < 1

q2n
.

• Let p/q be a Dirichlet approximation of k̃α/˜̀α. Put δk := |kα− k̃α| and similarly
for δ`. If max(δk , δ`) <

1
α(p+q) and q ≥ ` then

p/q = k/`.

Indeed, ∣∣∣∣kα + δk
`α + δ`

− p

q

∣∣∣∣ < 1

q2

implies that 1
q2 >

kq−p`
q` , which is possible only if kq − p` = 0.
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Buchmann-Pohst: extract a basis from the approximation
of a generating set (2/3)

The general case
bb̃12qc · · · bb̃k2qc

1
. . .

1


;LLL


ε1 · · · εk−n c̃1 · · · c̃n

m1,1 mn,1
...

... ?

m1,k mn,k


Theorem (Buchmann-Pohst)

If q ≥ q(L), an explicite expression depending only on L, the LLL-reduction of the
above matrix is such that

• ε1, . . . , εk−n have norm bounded by an explicit constant;

• m1, . . . ,mk−n ∈ L∗

• 2−q(c̃1, . . . , c̃n) is a an approximation of a basis of L.
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Buchmann-Pohst: extract a basis from the approximation
of a generating set (3/3)

The particular case of Q(ζn) when 4 | ϕ(n)

• O∗K is a Z[Gal(K )]-module, in particular a Z[i ]-module

• Poulalion: Buchmann-Pohst extends to Z[i ]

LLL over Z vs. LLL over Z[i ]

• Fieker-Stehlé (2010): to reduce a Z[i ]-module one can forget the Z[i ]-structure,
Z-reduce and retrieve the Z[i ]-structure;

• Kim-Lee (2017): LLL over Z[ζk ] works in practice even when Z[ζk ] is not
Euclidean;

• Camus (2018): implementation of LLL over Z[i ] faster than the best
implementation of LLL over Z.
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Space complexity of CHSP (1/2)

Definition (Continuous Hidden Subgroup Problem - CHSP)

Let f : Rm → S, where S = ⊕i∈{0,1}nC|i〉 is the space of states of n qubits.
The function f is an (a, r , ε)-oracle hiding the full-rank lattice L if and only if it
verifies the following technical conditions:

1. L is the period of f , i.e. ∀x∀` ∈ L, f (x + `) = f (x). (periodicity)

2. The function f is a-Lipschitz. (Lipschitz condition)

3. ∀x , y ∈ Rm such that dist(x − y , L) ≥ r , we have |〈f (x) | f (y)〉| ≤ ε. (strong
periodicity)

Given an efficient quantum algorithm to compute f , compute the hidden lattice of
periods L.

Representing a lattice in Ck with k <∞ (EHKS 2014)

• (straddle encoding):
|strν(x)〉 = cos(π2 t)|k〉+ sin(π2 t)|k + 1〉, where k = bx/νc, t = x/ν − k

• |strn,ν(x1, . . . , xn)〉 = ⊗n
i=1|strν(xi)〉

• f (L) = γ−1/2
∑

x∈L e
−π‖x‖2

/s |strn,ν(x)〉 with γ =
∑

x∈L e
−2π‖x‖2

/s2

.
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Space complexity of CHSP (2/2)

Theorem (dBDF 2019)

CHSP can be solved with a quantum algorithm with the following complexities:

• time: O(km2Q2)

• space: mQ + n with

Q = O(mk) + O(log a
λ∗1

) + O(log 1
λ∗1τ

),

k = O(m log(
√
ma(det L)1/m)).

k is the expectancy of the number of random vectors to generate L∗.
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Reduction of the O∗K computation to CHSP (1/2)
Lemma (The example of totally real fields)

Let K ⊂ R be an embedding of K . Then the function

(
f : R → P(R)

x 7→ exOK

)
has the

period logO∗K .

Proof.

exOK = eyOK ⇔ ex−yOK = OK

⇔ ex−y ∈ K and 〈ex−y〉 = OK

⇔ ±(x − y) ∈ log(O∗K )

Modify f to be used in CHSP

• logO∗K is not discret (not a lattice). Let K ⊂ R be an embedding and set
σ1 = id. Let σ1, σr1 be field automorphisms of R which extend the real
embeddings of K and let τr1+i , τr1+1, . . . be some complex embeddings of R which
extend the complex embeddings of K . Put σr1+i =

√
|τr1+i | and r = r1 + r1 − 1.(

f : Rr1+r2 → P(R)r+1

(x1, x2, . . . , xr+1) 7→ (ex1σ1(OK ), ex2σ2(OK ), . . . , exr+1σr+1(OK ))

)
has

the period logO∗K .

• encode any lattice of Rr+1, e.g. exOK , by Rq ⊂ Cq for a large enough q.

One actually finds {uu | u ∈ O∗K}

• if only wants the regulator or O∗K/(O∗K )` for a large prime` then we are done.

• For all O∗K use n embeddings. For the roots of unity one factors the discriminant.a

aEisenträger et al. prove that if F has domain G × Zk × Rm and is continuous on Rm one can construct a
continuous function whose period is the same. (HSP reduces to CHSP)
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Space complexity of the algorithm for O∗K

EHKS 2014 long version (2019)

• m = O(n) and n = O(m) where n = degK

• Theorem 5.5 and D.4: f is an
(a =

√
π/4c(

√
m/λ1)n + 1,R = O(m2 + m logD), ε = 3/4)-oracle for CHSP

• Theorem B.3: λ1 ≥ 1/2

• Equation (D.11): λ∗1 = Ω(1/
√
m)

Comparison between HSP and CHSP when computing O∗K
Notations: m = O(n) = O(degK ) and D = discK .

• When inserted in the dBDF space complexity we get

space = O(m4 logm + m3 logD + m log τ).

• For comparison, the space of HSP is dominated by that of HNF:
Micianccio and Warinschi 2001 : space(HNF) = O(m2 logD).

Question: can we find particular cases without Buchmann-Pohst ?
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Cyclotomic units
Definition

In K = Q(ζ) with ζ an mth root of unity, the group of cyclotomic units is the
subgroup C of O∗K generated by the roots of unity and ζ im − 1 with i ∈ N.

Properties whem m = pe (see e.g. Cramer, Ducas, Peikert, Regev 2015)

• (Whashington) C is generated by ±ζ and

βj :=
ζ j − 1

ζ − 1
,

with j ∈ (Z/m)∗/{±1}, j 6= 1.

• (Whashington) [LogO∗K : LogC ] = h+(m) := h(Q(ζ + 1/ζ)).

• (CDPR15)a We set bj = Logβj where Log = (log σ1, log σ2, . . . , log σn). Let {b∗j }j
be the dual basis of {bj}. Then

∥∥∥b∗j ∥∥∥2 = Ω(m−1 log3m). and in particular

1/λ1(M∗) = O(m/ log3m).

aCramer, Ducas, Peikert, Regev (2015) only treat the case m = pe but the general can be treated as in Lemma
3.5 of Cramer ducas Wesolowski (2021).

M := LogC is a sublatice of L := LogO∗K
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The checker-corrector (1/2)

When CVP(M∗) brings points in L∗

M ⊂ L so L∗ ⊂ M∗

CVP

M∗

L∗

If d(x , L∗) < 1
2λ1(M∗) then CVP(x ,M∗) returns a point of L∗.

Do the quantum part in low percision and correct it before Buchmann-Pohst.
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The checker-corrector (2/2)
Lemma

Let M ⊂ L be a lattice generated by BM (a matrix for L is not necessarily known). If
ỹ ∈ Rn is such that d(ỹ , L∗) < 1

2λ1(M∗) then one can solve CVP(ỹ , L∗) in polynomial
time.

Proof.
The following algorithm has a polynomial time complexity:

1. compute z̃ := B t
M ỹ ;

2. round z = (z1, . . . , zn) := (bz̃1e, . . . , bz̃ne);a

3. return y := (B t
M)−1z .

‖y − ỹ‖ =
∥∥(B t

M)−1(z − z̃)
∥∥

≤
∥∥(B t

M)−1
∥∥‖z − z̃‖ =‖BM∗‖‖z − z̃‖

≤ λ1(M∗) · 12 .

Let yL = CVP(ỹ , L∗). Then

‖yL − y‖ ≤‖yL − ỹ‖+‖y − ỹ‖ < 1

2
λ1(M∗) +

1

2
λ1(M∗) = λ1(M∗).

Since yL ∈ L∗ ⊂ M∗, yL − y ∈ M∗ so y = yL.

aIf d(ỹ , L∗) < 1
4λ1(M

∗) and ‖z − z̃‖ > 1/4 we can discard ỹ . The algoritms is a ”checker”.
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Solving CHSP in the cyclotomic case

Input τ and approximations at one bit of precision of R , λ∗1 and det L;
Output a basis of L with absolute error τ

1: k ← m log2 R − log2(det L)); δ = (λ∗1)
2 det L∗

2O(mk)‖B‖m+1
∞
τ δ = 1

2λ1(M∗)

2: for i = 1, 2, . . . , k do . Step 1 - Quantum
3: ỹi ← output(dual lattice sampler(δ))

4: pass correct (ỹ1, . . ., ỹk) from error 1
2λ1(M∗) to error (λ∗1)

2 det L∗

2O(mk)‖B‖m+1
∞
τ

5: end for
6: Use Buchmann-Pohst algorithm on (ỹ1, . . . , ỹk) to find a basis (y1, . . . , ym) of L∗;

call B the square matrix they form . Step 2 - Classical
7: Output (B−1)t (here B is the matrix a basis of L∗). . Step 3 - Classical

Space complexity of the quantum step

• without the corrector: From slide ”Space complexity”:

space−m log τ = O(m4 logm + m3 logD) = O(m4 logm) = Õ(m4)

because D = disc(Q(ζm)) = O(mm).

• with the corrector:

space−m log τ = O(m(log δ)) = O(m log λ1(M∗)) = O(m2/ log3m) = Õ(m2).
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A different point of view

Input τ and approximations at one bit of precision of R , λ∗1 and det L;
Output a basis of L with absolute error τ

1: k ← m log2 R − log2(det L)); δ = (λ∗1)
2 det L∗

2O(mk)‖B‖m+1
∞
τ

2: for i = 1, 2, . . . , k do . Step 1 - Quantum
3: ỹi ← output(dual lattice sampler(δ))
4: pass correct (ỹ1, . . . , ỹk) with an error small enough to obtain (y1, . . . , yn) with

integer coordinates in a basis of M∗.
5: end for
6: Use Buchmann-Pohst algorithm on (ỹ1, . . . , ỹk) to find a basis (y1, . . . , ym) of L∗;

Compute a Hermite normal form (HNF) to obtain the exact value of [L : M]. .
Step 2 - Classical

7: Output (B−1)t ∈ 1
[L:M]Matm(Z), where B ∈ Matm(Z) is the matrix of (y1, . . . , yn)

written in a basis of M∗. . Step 3 - Classical

Instead of a complexity analysis

The time complexity of HNF is heuristic O(m4) so the decrease of precision is Õ(m4).
Hence HNF on cyclotomic fields is faster than CHSP on arbitrary fields.
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Conclusion

Reduction of number theory problems to (C)HSP

• factoring and DLP in abelian groups: HSP

• O∗K and Cl(K ) of fixed degree: HSP

• O∗K and Cl(K ) of arbitrary degree: CHSP

• O∗K of cyclotomic fields: at least as fast as HSP
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