
The supersingular isogeny problem in genus 2 and beyond

Craig Costello and Benjamin Smith
ANR CIAO Kickoff meeting, Bordeaux, February 2020

Microsoft Research and Inria + École polytechnique

1

g = 1

The supersingular isogeny graph

For each prime p, we let S1(p) be the set of supersingular elliptic curves over Fp2 ,
up to Fp2-isomorphism:

#S1(p) ≈ ⌊p/12⌋ ;

we can view S1(p) ⊂ Fp2 via the j-invariant.

For primes ℓ ̸= p, we let Γ1(ℓ;p) be the ℓ-isogeny graph on S1(p). This is

• A directed multigraph (but almost a graph)
• Connected
• (ℓ+ 1)-regular
• Ramanujan (excellent expansion properties)

Random walks in Γ1(ℓ;p) of length O(log p) give a uniform distribution on S1(p).

1

Supersingular isogeny problem

The general supersingular elliptic isogeny problem for fixed ℓ:

Given E and E ′ in S1(p), find a path from E to E ′ in Γ1(ℓ;p)

classical solution in O(
√
#S1(p)) = O(√p)

quantum solution in O(4
√

#S1(p)) = O(4
√p)

This general problem (our focus today) is related to the security of the
Charles–Goren–Lauter hash function.

SIDH security is related to the special problem of finding very short paths
(length < log p. Solving the general problem has important implications for this
short-path problem (not in this talk).

2

The Charles–Goren–Lauter hash function

Charles–Goren–Lauter (2009): a hash function with provable collision-resistance
properties. System parameters:

• A prime p, an ordering on Fp2 (hence on S1(p)), and a linear map π : Fp2 → Fp
• An edge j−1 → j0 in Γ1(2;p)

To compute the hash of an n-bit message m = (m0, . . . ,mn−1),
we compute a corresponding path j0 → · · · → jn in Γ1(ℓ;p): for each 0 ≤ i < n,

1. the 3 edges out of ji are ji → ji−1, ji → α, and ji → β with α > β

2. if mi = 0, then set ji+1 = α; otherwise, set ji+1 = β

The hash value is H(m) = π(jn).

Solving the isogeny problem for ℓ = 2 =⇒ finding preimages for this hash.

3

g > 1

Higher dimensions: superspecial and supersingular

A g-dimensional PPAV A is

Supersingular if all slopes of the Newton polygon of its Frobenius are 1/2.
Any supersingular A is isogenous to a product of supersingular ECs.

Superspecial if Frobenius acts as 0 on H1(A,OA).
Any superspecial A is isomorphic to a product of supersingular ECs,
though generally only as unpolarized AVs.

• Superspecial =⇒ supersingular.
• Superspeciality is preserved by (ℓ, . . . , ℓ)-isogeny.

4

The superspecial set

For each g > 0 and prime p, we define

Sg(p) :=
{
superspecial PPAVs over Fp2

}
/∼= .

We have
#Sg(p) = O(pg(g+1)/2)

(with much more precise statements for g ≤ 3).

5

The superspecial graph

For primes ℓ ̸= p, we let Γg(ℓ;p) be the (ℓ, . . . , ℓ)-isogeny graph on Sg(p).

The graph Γg(ℓ;p) is connected and Ng(ℓ)-regular, where

Ng(ℓ) :=
g∑

d=0

[
g
d

]
ℓ

· ℓ(
g−d+1

2)

where
[n
k
]
ℓ
:= (n)ℓ···(n−k+1)ℓ

(k)ℓ···(1)ℓ , where (i)ℓ := ℓi−1
ℓ−1 counts the k-diml subspaces of F

n
ℓ .

Expander hypothesis: we assume Γg(ℓ;p) is Ramanujan.

If the hypothesis fails, then our algorithm might be less efficient,
but commensurately so with the cryptosystems that it attacks.

6

Generalizing CGL to genus 2: Takashima

Takashima was the first to generalize CGL to AVs of dimension g = 2.

Takashima’s hash works exactly like CGL, but

• S1(p) becomes S2(p) (Takashima wants to use the full supersingular graph,
but ends up stuck in the superspecial component)

• Γ1(2;p) becomes Γ2(2;p): i.e. 2-isogenies become (2, 2)-isogenies,

To compute the walks in Γ2(2;p), Takashima uses

• supersingular genus-2 curves to represent the vertices (with the j-invariant
becomes the Igusa–Clebsch invariants), and

• Richelot’s formulæ to compute the isogeny steps

Note that Γ1(2;p) is 15-regular, so the data to be hashed is coded in base ≤ 14!

7

Trivial 4-cycles in the genus-2 graph

Flynn and Ti observe a serious issue with Takashima’s hash function:
It is easy to construct cycles of length 4 starting at any vertex of Γ2(ℓ;p).

Take P ∈ A0[ℓ2], Q,R ∈ A0[ℓ] s.t. eℓ([ℓ]P,R) = eℓ([ℓ]P,Q) = 1; form (ℓ, ℓ)-isogenies

ϕ0 :A0 −→ A1 = A0/K0 where K0 := ⟨[ℓ]P,Q⟩
ϕ′0 :A0 −→ A′

1 = A0/K′0 where K′0 := ⟨[ℓ]P,Q⟩
ϕ1 :A1 −→ A2 = A1/K1 where K1 := ϕ0(K′0)
ϕ′1 :A1 −→ A′

2 = A1/K′1 where K′1 := ϕ′0(K0)

Now ker(ϕ1 ◦ ϕ0) = ker(ϕ′1 ◦ ϕ′0), so A2 ∼= A′
2, and so we get a cycle

A0
ϕ0−→ A1

ϕ1−→ A2 ∼= A′
2
(ϕ′

1)
†

−→ A′
1
(ϕ′

0)
†

−→ A0 .

=⇒ in g > 1, non-backtracking is not strong enough to avoid hash collisions.
8

Generalizing CGL to genus 2: Castryck–Decru–Smith

Castryck–Decru–S. (Nutmic 2019): an attempt to fix Takashima.

• Explicitly restriction to the superspecial graph Γ2(2;p)
• New rule for isogeny walks to replace non-backtracking:
for each (2, 2)-isogeny ϕi : Ai → Ai+1, we must choose one of the eight
(2, 2)-isogenies ϕi+1 : Ai+1 → Ai+2 such that ϕi+1 ◦ ϕi is a (4, 4)-isogeny.

Implementation: again, represent vertices with (Jacobians of) genus-2 curves,
and compute edges using Richelot isogenies.

9

The superspecial genus 2 graph

Minor inconvenience: there are two types of PPAVs in dimension g = 2:
Jacobians of genus-2 curves, and elliptic products.

• Isomorphism invariants are incompatible
• Richelot’s formulæ break down when the codomain is an elliptic product

Partition S2(p) into corresponding subsets, S2(p)J and S2(p)E; then

#S2(p)J =
1

2880p
3 +

1
120p

2 and #S2(p)E =
1
288p

2 + O(p) .

Being a proof of concept, CDS takes a simple solution: fail on elliptic products.
Justification: a random A ∈ S2(p) has only a O(1/p) chance of being in S2(p)E.

Bad news: from a cryptanalytic point of view, this is not rare enough.

10

The superspecial genus 2 graph

Minor inconvenience: there are two types of PPAVs in dimension g = 2:
Jacobians of genus-2 curves, and elliptic products.

• Isomorphism invariants are incompatible
• Richelot’s formulæ break down when the codomain is an elliptic product

Partition S2(p) into corresponding subsets, S2(p)J and S2(p)E; then

#S2(p)J =
1

2880p
3 +

1
120p

2 and #S2(p)E =
1
288p

2 + O(p) .

Being a proof of concept, CDS takes a simple solution: fail on elliptic products.
Justification: a random A ∈ S2(p) has only a O(1/p) chance of being in S2(p)E.

Bad news: from a cryptanalytic point of view, this is not rare enough.

10

Solving the isogeny problem in g > 1

Results

Theorem (Costello–S., PQCrypto 2020):

1. There exists a classical algorithm which solves isogeny problems in Γg(ℓ;p)
with probability ≥ 1/2g−1 in expected time Õ((pg−1/P)) on P processors as
p→ ∞ (with ℓ fixed).

2. There exists a quantum algorithm which solves isogeny problems in Γg(ℓ;p)
in expected time Õ(

√
pg−1) as p→ ∞ (with ℓ fixed).

This talk: the classical algorithm.

Details: https://eprint.iacr.org/2019/1387

11

https://eprint.iacr.org/2019/1387

Attacking the isogeny problem

Recall: if we just view Γg(ℓ;p) as a generic Ng(ℓ)-regular Ramanujan graph, then
solving the path-finding problem would cost O(pg(g+1)/4) (classical) isogeny steps.

Key observation: in g = 2, we have #S2(p)E >
√

#S2(p)J. This pattern continues
in g > 2. We beat square-root algorithms by exploiting this special subset.

Let’s look at the algorithm for g = 2 first. Recursive application will give us g > 2.

12

The algorithm in g = 2: Step 1

The algorithm in dimension g = 2 (attacking Takashima and Castryck–Decru–S.):

Step 1: Compute paths from our target PPASes into elliptic product vertices:

ϕ : A → · · · → E1 × E2 ∈ S2(p)E

ϕ′ : A′ → · · · → E ′
1 × E ′

2 ∈ S2(p)E

Expander hypothesis =⇒ we find ϕ (and ϕ′) after O(p) random walks of length
in O(log p): total cost is Õ(p/P) isogeny steps on P classical processors.

It remains to compute a path E1 × E2 → · · · → E ′
1 × E ′

2 in Γ2(ℓ;p) in Õ(p) steps.

13

The algorithm in g = 2: Step 1

The algorithm in dimension g = 2 (attacking Takashima and Castryck–Decru–S.):

Step 1: Compute paths from our target PPASes into elliptic product vertices:

ϕ : A → · · · → E1 × E2 ∈ S2(p)E

ϕ′ : A′ → · · · → E ′
1 × E ′

2 ∈ S2(p)E

Expander hypothesis =⇒ we find ϕ (and ϕ′) after O(p) random walks of length
in O(log p): total cost is Õ(p/P) isogeny steps on P classical processors.

It remains to compute a path E1 × E2 → · · · → E ′
1 × E ′

2 in Γ2(ℓ;p) in Õ(p) steps.

13

The algorithm in g = 2: Step 2

Step 2: to compute a path E1 × E2 → · · · → E ′
1 × E ′

2 in Γ2(ℓ;p),

1. Compute paths ψ1 : E1 → · · · → E ′
1 and ψ2 : E2 → · · · → E ′

2 in Γ1(ℓ;p).

2. If length(ψ1) ̸≡ length(ψ2) (mod 2), then go back to Step 1 (or swap E1 ↔ E2).
3. Trivially stretch the shorter of the ψi to the same length as the other,
by stepping back and forth on the last component isogeny.

4. Compose the products of the i-th components of ψ1 and ψ2 to get a path

ψ× : E1 × E2 → · · · → E ′
1 × E ′

2 in Γ2(ℓ;p) .

Cost: same as solving the isogeny problem in Γ1(ℓ;p), i.e. O(
√p/P).

The composition (ϕ′)† ◦ ψ× ◦ ϕ is a path from A to A′ in Γ2(ℓ;p).

We can thus solve the isogeny problem in Γ2(ℓ;p) in Õ(p) isogeny steps.

14

The algorithm in g = 2: Step 2

Step 2: to compute a path E1 × E2 → · · · → E ′
1 × E ′

2 in Γ2(ℓ;p),

1. Compute paths ψ1 : E1 → · · · → E ′
1 and ψ2 : E2 → · · · → E ′

2 in Γ1(ℓ;p).
2. If length(ψ1) ̸≡ length(ψ2) (mod 2), then go back to Step 1 (or swap E1 ↔ E2).
3. Trivially stretch the shorter of the ψi to the same length as the other,
by stepping back and forth on the last component isogeny.

4. Compose the products of the i-th components of ψ1 and ψ2 to get a path

ψ× : E1 × E2 → · · · → E ′
1 × E ′

2 in Γ2(ℓ;p) .

Cost: same as solving the isogeny problem in Γ1(ℓ;p), i.e. O(
√p/P).

The composition (ϕ′)† ◦ ψ× ◦ ϕ is a path from A to A′ in Γ2(ℓ;p).

We can thus solve the isogeny problem in Γ2(ℓ;p) in Õ(p) isogeny steps.

14

The algorithm in g = 2: Step 2

Step 2: to compute a path E1 × E2 → · · · → E ′
1 × E ′

2 in Γ2(ℓ;p),

1. Compute paths ψ1 : E1 → · · · → E ′
1 and ψ2 : E2 → · · · → E ′

2 in Γ1(ℓ;p).
2. If length(ψ1) ̸≡ length(ψ2) (mod 2), then go back to Step 1 (or swap E1 ↔ E2).
3. Trivially stretch the shorter of the ψi to the same length as the other,
by stepping back and forth on the last component isogeny.

4. Compose the products of the i-th components of ψ1 and ψ2 to get a path

ψ× : E1 × E2 → · · · → E ′
1 × E ′

2 in Γ2(ℓ;p) .

Cost: same as solving the isogeny problem in Γ1(ℓ;p), i.e. O(
√p/P).

The composition (ϕ′)† ◦ ψ× ◦ ϕ is a path from A to A′ in Γ2(ℓ;p).

We can thus solve the isogeny problem in Γ2(ℓ;p) in Õ(p) isogeny steps.

14

Attacking higher genus

The same idea works in higher dimension as follows.

Recall: #Sg(p) = O(pg(g+1)/2), so classical square-root algorithms solve the
isogeny problem in Γg(ℓ;p) in O(pg(g+1)/4) isogeny steps.

Let Tg(p) be the image of S1(p)× Sg−1(p) in Sg(p) (product polarization).

We have #S1(p) = O(p) and #Sg−1(p) = O(pg(g−1)/2), so

#Tg(p) = O(p(g2−g+2)/2) ;

so the probability that a random A in Sg(p) is in Tg(p) is in O(1/p(g−1)).

Key observation: g− 1 < g(g+ 1)/4 (and much smaller for large g).

We should be able to efficiently recognise steps into Tg(p) by something
analogous to the breakdown in Richelot’s formulæ in g = 2 (theta relations?).

15

Solving the general isogeny problem

To find a path from A to A′ in Γg(ℓ;p):

1. Compute paths ϕ : A → E ×B ∈ Tg(p) and ϕ′ : A′ → E ′ ×B′ ∈ Tg(p) in Γg(ℓ;p)
Expander hypothesis =⇒ Õ(pg−1/P) isogeny steps. Dominant step

2. Compute a path ψE : E → · · · → E ′ in Γ1(ℓ;p)
Usual elliptic algorithm =⇒ O(√p/P) isogeny steps

3. Recurse to compute a path ψB : B → · · · → B′ in Γg−1(ℓ;p)
Expander hypothesis =⇒ Õ(pg−2/P) isogeny steps

4. Apply the elliptic isogeny-glueing technique to get the final path.
Probability of compatible lengths: 1/2g−1.

Total cost: Õ(pg−1/P), dominated by the cost of walking into Tg(p) in Step 1.
Much faster than O(pg(g+1)/4).

16

Cryptographic implications

Isogeny-based hashing in g > 1 is much less efficient than the elliptic equivalent.

Question: what about SIDH analogues? The isogeny paths produced by our
algorithms are too long to represent SIDH-type cryptosystem keys.

However, they allow us to connect target PPAVs with PPAVs with known
endomorphism ring, and then KLPT-style techniques let us shorten the paths.

There is a lot of detail to work out here (good thing we have ANR CIAO).

Conclusion: supersingular isogeny-based cryptosystems in dimension g > 1
are likely to be uncompetitive with elliptic equivalents.

17

	g = 1
	g > 1
	Solving the isogeny problem in g > 1

