The supersingular isogeny problem in genus 2 and beyond

Craig Costello and Benjamin Smith

ANR CIAO Kickoff meeting, Bordeaux, February 2020

Microsoft Research and Inria + École polytechnique

$$g = 1$$

The supersingular isogeny graph

For each prime p, we let $S_1(p)$ be the set of **supersingular elliptic curves** over \mathbb{F}_{p^2} , up to \mathbb{F}_{p^2} -isomorphism:

 $\#S_1(p) \approx \lfloor p/12 \rfloor;$

we can view $S_1(p) \subset \mathbb{F}_{p^2}$ via the *j*-invariant.

For primes $\ell \neq p$, we let $\Gamma_1(\ell; p)$ be the ℓ -isogeny graph on $S_1(p)$. This is

- A directed multigraph (but almost a graph)
- \cdot Connected
- $(\ell + 1)$ -regular
- Ramanujan (excellent expansion properties)

Random walks in $\Gamma_1(\ell; p)$ of length $O(\log p)$ give a uniform distribution on $S_1(p)$.

The general supersingular elliptic **isogeny problem** for fixed ℓ : Given \mathcal{E} and \mathcal{E}' in $S_1(p)$, find a path from \mathcal{E} to \mathcal{E}' in $\Gamma_1(\ell; p)$

classical solution in
$$O(\sqrt{\#S_1(p)}) = O(\sqrt{p})$$

quantum solution in $O(\sqrt[4]{\#S_1(p)}) = O(\sqrt[4]{p})$

This **general** problem (our focus today) is related to the security of the Charles–Goren–Lauter hash function.

SIDH security is related to the special problem of finding very **short paths** (length < log p. Solving the general problem has important implications for this short-path problem (not in this talk).

Charles–Goren–Lauter (2009): a hash function with provable collision-resistance properties. System parameters:

- A prime p, an ordering on \mathbb{F}_{p^2} (hence on $S_1(p)$), and a linear map $\pi : \mathbb{F}_{p^2} \to \mathbb{F}_p$
- An edge $j_{-1} \rightarrow j_0$ in $\Gamma_1(2; p)$

To compute the hash of an *n*-bit message $m = (m_0, ..., m_{n-1})$, we compute a corresponding path $j_0 \rightarrow \cdots \rightarrow j_n$ in $\Gamma_1(\ell; p)$: for each $0 \le i < n$,

1. the 3 edges out of j_i are $j_i \rightarrow j_{i-1}$, $j_i \rightarrow \alpha$, and $j_i \rightarrow \beta$ with $\alpha > \beta$

2. if $m_i = 0$, then set $j_{i+1} = \alpha$; otherwise, set $j_{i+1} = \beta$

The hash value is $H(m) = \pi(j_n)$.

Solving the **isogeny problem** for $\ell = 2 \implies$ finding preimages for this hash.

g > 1

A g-dimensional PPAV ${\mathcal A}$ is

 Supersingular if all slopes of the Newton polygon of its Frobenius are 1/2. Any supersingular A is isogenous to a product of supersingular ECs.
 Superspecial if Frobenius acts as 0 on H¹(A, O_A). Any superspecial A is isomorphic to a product of supersingular ECs, though generally only as unpolarized AVs.

- \cdot Superspecial \Longrightarrow supersingular.
- Superspeciality is preserved by (ℓ, \ldots, ℓ) -isogeny.

For each g > 0 and prime p, we define

$$S_g(p) := \{ \text{superspecial PPAVs over } \mathbb{F}_{p^2} \} /\cong .$$

We have

$$\#S_g(p) = O(p^{g(g+1)/2})$$

(with much more precise statements for $g \leq 3$).

For primes $\ell \neq p$, we let $\Gamma_g(\ell; p)$ be the (ℓ, \dots, ℓ) -isogeny graph on $S_g(p)$. The graph $\Gamma_g(\ell; p)$ is connected and $N_g(\ell)$ -regular, where

$$N_g(\ell) := \sum_{d=0}^g \begin{bmatrix} g \\ d \end{bmatrix}_{\ell} \cdot \ell^{\binom{g-d+1}{2}}$$

where $\begin{bmatrix}n\\k\end{bmatrix}_{\ell} := \frac{(n)_{\ell}\cdots(n-k+1)_{\ell}}{(k)_{\ell}\cdots(1)_{\ell}}$, where $(i)_{\ell} := \frac{\ell^{i}-1}{\ell-1}$ counts the *k*-diml subspaces of \mathbb{F}_{ℓ}^{n} . **Expander hypothesis**: we assume $\Gamma_{q}(\ell; p)$ is Ramanujan.

If the hypothesis fails, then our algorithm might be less efficient, but commensurately so with the cryptosystems that it attacks. **Takashima** was the first to generalize CGL to AVs of dimension g = 2. Takashima's hash works exactly like CGL, but

- $S_1(p)$ becomes $S_2(p)$ (Takashima wants to use the full supersingular graph, but ends up stuck in the superspecial component)
- $\Gamma_1(2; p)$ becomes $\Gamma_2(2; p)$: i.e. 2-isogenies become (2, 2)-isogenies,

To compute the walks in $\Gamma_2(2; p)$, Takashima uses

- supersingular **genus-2 curves** to represent the vertices (with the *j*-invariant becomes the Igusa–Clebsch invariants), and
- Richelot's formulæ to compute the isogeny steps

Note that $\Gamma_1(2; p)$ is 15-regular, so the data to be hashed is coded in base $\leq 14!$

Trivial 4-cycles in the genus-2 graph

Flynn and Ti observe a serious issue with Takashima's hash function: It is easy to construct **cycles of length 4** starting at any vertex of $\Gamma_2(\ell; p)$.

Take $P \in \mathcal{A}_0[\ell^2]$, $Q, R \in \mathcal{A}_0[\ell]$ s.t. $e_{\ell}([\ell]P, R) = e_{\ell}([\ell]P, Q) = 1$; form (ℓ, ℓ) -isogenies

$\phi_0:\mathcal{A}_0\longrightarrow \mathcal{A}_1=\mathcal{A}_0/\mathcal{K}_0$	where $K_0 := \langle [\ell] P, Q \rangle$
$\phi_0': \mathcal{A}_0 \longrightarrow \mathcal{A}_1' = \mathcal{A}_0/\mathcal{K}_0'$	where $\mathcal{K}_0':=\langle [\ell] P, Q angle$
$\phi_1: \mathcal{A}_1 \longrightarrow \mathcal{A}_2 = \mathcal{A}_1/\mathcal{K}_1$	where $K_1 := \phi_0(K'_0)$
$\phi_1': \mathcal{A}_1 \longrightarrow \mathcal{A}_2' = \mathcal{A}_1/\mathcal{K}_1'$	where ${\it K}_1':=\phi_0'({\it K}_0)$

Now $\ker(\phi_1 \circ \phi_0) = \ker(\phi_1' \circ \phi_0')$, so $\mathcal{A}_2 \cong \mathcal{A}_2'$, and so we get a cycle

$$\mathcal{A}_0 \stackrel{\phi_0}{\longrightarrow} \mathcal{A}_1 \stackrel{\phi_1}{\longrightarrow} \mathcal{A}_2 \cong \mathcal{A}_2' \stackrel{(\phi_1')^{\dagger}}{\longrightarrow} \mathcal{A}_1' \stackrel{(\phi_0')^{\dagger}}{\longrightarrow} \mathcal{A}_0$$
 .

 \implies in g > 1, **non-backtracking is not strong enough** to avoid hash collisions.

Castryck–Decru–S. (Nutmic 2019): an attempt to fix Takashima.

- Explicitly restriction to the superspecial graph $\Gamma_2(2; p)$
- New rule for isogeny walks to replace non-backtracking: for each (2, 2)-isogeny $\phi_i : \mathcal{A}_i \to \mathcal{A}_{i+1}$, we must choose one of the **eight** (2, 2)-isogenies $\phi_{i+1} : \mathcal{A}_{i+1} \to \mathcal{A}_{i+2}$ such that $\phi_{i+1} \circ \phi_i$ is a (4, 4)-isogeny.

Implementation: again, represent vertices with (Jacobians of) genus-2 curves, and compute edges using Richelot isogenies.

The superspecial genus 2 graph

Minor inconvenience: there are *two types* of PPAVs in dimension g = 2: Jacobians of genus-2 curves, and elliptic products.

- Isomorphism invariants are incompatible
- Richelot's formulæ break down when the codomain is an elliptic product

Partition $S_2(p)$ into corresponding subsets, $S_2(p)^J$ and $S_2(p)^E$; then

$$\#S_2(p)^J = \frac{1}{2880}p^3 + \frac{1}{120}p^2$$
 and $\#S_2(p)^E = \frac{1}{288}p^2 + O(p)$.

Being a proof of concept, CDS takes a simple solution: fail on elliptic products. Justification: a random $\mathcal{A} \in S_2(p)$ has only a O(1/p) chance of being in $S_2(p)^E$.

The superspecial genus 2 graph

Minor inconvenience: there are *two types* of PPAVs in dimension g = 2: Jacobians of genus-2 curves, and elliptic products.

- Isomorphism invariants are incompatible
- Richelot's formulæ break down when the codomain is an elliptic product

Partition $S_2(p)$ into corresponding subsets, $S_2(p)^J$ and $S_2(p)^E$; then

$$\#S_2(p)^J = \frac{1}{2880}p^3 + \frac{1}{120}p^2$$
 and $\#S_2(p)^E = \frac{1}{288}p^2 + O(p)$.

Being a proof of concept, CDS takes a simple solution: fail on elliptic products. Justification: a random $\mathcal{A} \in S_2(p)$ has only a O(1/p) chance of being in $S_2(p)^E$.

Bad news: from a cryptanalytic point of view, this is not rare enough.

Solving the isogeny problem in g > 1

Theorem (Costello-S., PQCrypto 2020):

- 1. There exists a **classical algorithm** which solves isogeny problems in $\Gamma_g(\ell; p)$ with probability $\geq 1/2^{g-1}$ in expected time $\widetilde{O}((p^{g-1}/P))$ on P processors as $p \to \infty$ (with ℓ fixed).
- 2. There exists a **quantum algorithm** which solves isogeny problems in $\Gamma_g(\ell; p)$ in expected time $\widetilde{O}(\sqrt{p^{g-1}})$ as $p \to \infty$ (with ℓ fixed).

This talk: the classical algorithm.

Details: https://eprint.iacr.org/2019/1387

Recall: if we just view $\Gamma_g(\ell; p)$ as a generic $N_g(\ell)$ -regular Ramanujan graph, then solving the path-finding problem would cost $O(p^{g(g+1)/4})$ (classical) isogeny steps. **Key observation**: in g = 2, we have $\#S_2(p)^E > \sqrt{\#S_2(p)^J}$. This pattern continues in g > 2. We beat square-root algorithms by exploiting this special subset. Let's look at the algorithm for q = 2 first. Recursive application will give us q > 2.

The algorithm in dimension g = 2 (attacking Takashima and Castryck–Decru–S.):

The algorithm in dimension g = 2 (attacking Takashima and Castryck–Decru–S.): Step 1: Compute paths from our target PPASes into elliptic product vertices:

$$\phi: \mathcal{A} \to \cdots \to \mathcal{E}_1 \times \mathcal{E}_2 \in S_2(p)^E$$
$$\phi': \mathcal{A}' \to \cdots \to \mathcal{E}'_1 \times \mathcal{E}'_2 \in S_2(p)^E$$

Expander hypothesis \implies we find ϕ (and ϕ') after O(p) random walks of length in $O(\log p)$: total cost is $\tilde{O}(p/P)$ isogeny steps on P classical processors.

It remains to compute a path $\mathcal{E}_1 \times \mathcal{E}_2 \to \cdots \to \mathcal{E}'_1 \times \mathcal{E}'_2$ in $\Gamma_2(\ell; p)$ in $\widetilde{O}(p)$ steps.

The algorithm in g = 2: Step 2

Step 2: to compute a path $\mathcal{E}_1 \times \mathcal{E}_2 \to \cdots \to \mathcal{E}'_1 \times \mathcal{E}'_2$ in $\Gamma_2(\ell; p)$,

1. Compute paths $\psi_1 : \mathcal{E}_1 \to \cdots \to \mathcal{E}'_1$ and $\psi_2 : \mathcal{E}_2 \to \cdots \to \mathcal{E}'_2$ in $\Gamma_1(\ell; p)$.

The algorithm in g = 2: Step 2

Step 2: to compute a path $\mathcal{E}_1 \times \mathcal{E}_2 \to \cdots \to \mathcal{E}'_1 \times \mathcal{E}'_2$ in $\Gamma_2(\ell; p)$,

- 1. Compute paths $\psi_1 : \mathcal{E}_1 \to \cdots \to \mathcal{E}'_1$ and $\psi_2 : \mathcal{E}_2 \to \cdots \to \mathcal{E}'_2$ in $\Gamma_1(\ell; p)$.
- 2. If length(ψ_1) \neq length(ψ_2) (mod 2), then go back to Step 1 (or swap $\mathcal{E}_1 \leftrightarrow \mathcal{E}_2$).
- 3. Trivially **stretch** the shorter of the ψ_i to the same length as the other, by stepping back and forth on the last component isogeny.

The algorithm in g = 2: Step 2

Step 2: to compute a path $\mathcal{E}_1 \times \mathcal{E}_2 \to \cdots \to \mathcal{E}'_1 \times \mathcal{E}'_2$ in $\Gamma_2(\ell; p)$,

- 1. Compute paths $\psi_1 : \mathcal{E}_1 \to \cdots \to \mathcal{E}'_1$ and $\psi_2 : \mathcal{E}_2 \to \cdots \to \mathcal{E}'_2$ in $\Gamma_1(\ell; p)$.
- 2. If length(ψ_1) \neq length(ψ_2) (mod 2), then go back to Step 1 (or swap $\mathcal{E}_1 \leftrightarrow \mathcal{E}_2$).
- 3. Trivially **stretch** the shorter of the ψ_i to the same length as the other, by stepping back and forth on the last component isogeny.
- 4. Compose the products of the *i*-th components of ψ_1 and ψ_2 to get a path

$$\psi^{\times}: \mathcal{E}_1 \times \mathcal{E}_2 \to \cdots \to \mathcal{E}'_1 \times \mathcal{E}'_2 \quad \text{in } \Gamma_2(\ell; p).$$

Cost: same as solving the isogeny problem in $\Gamma_1(\ell; p)$, i.e. $O(\sqrt{p}/P)$. The composition $(\phi')^{\dagger} \circ \psi^{\times} \circ \phi$ is a path from \mathcal{A} to \mathcal{A}' in $\Gamma_2(\ell; p)$.

We can thus solve the isogeny problem in $\Gamma_2(\ell; p)$ in $\widetilde{O}(p)$ isogeny steps.

The same idea works **in higher dimension** as follows.

Recall: $\#S_g(p) = O(p^{g(g+1)/2})$, so classical square-root algorithms solve the isogeny problem in $\Gamma_g(\ell; p)$ in $O(p^{g(g+1)/4})$ isogeny steps.

Let $T_g(p)$ be the image of $S_1(p) \times S_{g-1}(p)$ in $S_g(p)$ (product polarization).

We have $\#S_1(p) = O(p)$ and $\#S_{g-1}(p) = O(p^{g(g-1)/2})$, so $\#T_g(p) = O(p^{(g^2-g+2)/2})$;

so the probability that a random \mathcal{A} in $S_g(p)$ is in $T_g(p)$ is in $O(1/p^{(g-1)})$.

Key observation: g - 1 < g(g + 1)/4 (and much smaller for large g).

We should be able to efficiently recognise steps into $T_g(p)$ by something analogous to the breakdown in Richelot's formulæ in g = 2 (theta relations?).

Solving the general isogeny problem

To find a path from \mathcal{A} to \mathcal{A}' in $\Gamma_g(\ell; p)$:

- 1. Compute paths $\phi : \mathcal{A} \to \mathcal{E} \times \mathcal{B} \in T_g(p)$ and $\phi' : \mathcal{A}' \to \mathcal{E}' \times \mathcal{B}' \in T_g(p)$ in $\Gamma_g(\ell; p)$ Expander hypothesis $\implies \widetilde{O}(p^{g-1}/P)$ isogeny steps. Dominant step
- 2. Compute a path $\psi_E : \mathcal{E} \to \cdots \to \mathcal{E}'$ in $\Gamma_1(\ell; p)$ Usual elliptic algorithm $\implies O(\sqrt{p}/P)$ isogeny steps
- 3. Recurse to compute a path $\psi_B : \mathcal{B} \to \cdots \to \mathcal{B}'$ in $\Gamma_{g-1}(\ell; p)$ Expander hypothesis $\implies \widetilde{O}(p^{g-2}/P)$ isogeny steps
- Apply the elliptic isogeny-glueing technique to get the final path. Probability of compatible lengths: 1/2^{g-1}.

Total cost: $\widetilde{O}(p^{g-1}/P)$, dominated by the cost of walking into $T_g(p)$ in Step 1. **Much faster** than $O(p^{g(g+1)/4})$. **Isogeny-based hashing** in g > 1 is **much less efficient** than the elliptic equivalent.

Question: what about SIDH analogues? The isogeny paths produced by our algorithms are **too long** to represent SIDH-type cryptosystem keys.

However, they allow us to connect target PPAVs with PPAVs with known endomorphism ring, and then KLPT-style techniques let us shorten the paths.

There is a lot of detail to work out here (good thing we have ANR CIAO).

Conclusion: supersingular isogeny-based cryptosystems in dimension g > 1 are **likely to be uncompetitive** with elliptic equivalents.