The supersingular isogeny problem in genus 2 and beyond

Craig Costello and Benjamin Smith
ANR CIAO Kickoff meeting, Bordeaux, February 2020
Microsoft Research and Inria + École polytechnique

$$
g=1
$$

The supersingular isogeny graph

For each prime p, we let $S_{1}(p)$ be the set of supersingular elliptic curves over $\mathbb{F}_{p^{2}}$, up to $\mathbb{F}_{p^{2}}$-isomorphism:

$$
\# S_{1}(p) \approx\lfloor p / 12\rfloor ;
$$

we can view $S_{1}(p) \subset \mathbb{F}_{p^{2}}$ via the j-invariant.
For primes $\ell \neq p$, we let $\Gamma_{1}(\ell ; p)$ be the ℓ-isogeny graph on $S_{1}(p)$. This is

- A directed multigraph (but almost a graph)
- Connected
- $(\ell+1)$-regular
- Ramanujan (excellent expansion properties)

Random walks in $\Gamma_{1}(\ell ; p)$ of length $O(\log p)$ give a uniform distribution on $S_{1}(p)$.

Supersingular isogeny problem

The general supersingular elliptic isogeny problem for fixed ℓ :
Given \mathcal{E} and \mathcal{E}^{\prime} in $S_{1}(p)$, find a path from \mathcal{E} to \mathcal{E}^{\prime} in $\Gamma_{1}(\ell ; p)$
classical solution in $O\left(\sqrt{\# S_{1}(p)}\right)=O(\sqrt{p})$
quantum solution in $O\left(\sqrt[4]{\# S_{1}(p)}\right)=O(\sqrt[4]{p})$
This general problem (our focus today) is related to the security of the Charles-Goren-Lauter hash function.

SIDH security is related to the special problem of finding very short paths (length $<\log p$. Solving the general problem has important implications for this short-path problem (not in this talk).

The Charles-Goren-Lauter hash function

Charles-Goren-Lauter (2009): a hash function with provable collision-resistance properties. System parameters:

- A prime p, an ordering on $\mathbb{F}_{p^{2}}$ (hence on $S_{1}(p)$), and a linear map $\pi: \mathbb{F}_{p^{2}} \rightarrow \mathbb{F}_{p}$
- An edge $j_{-1} \rightarrow j_{0}$ in $\Gamma_{1}(2 ; p)$

To compute the hash of an n-bit message $m=\left(m_{0}, \ldots, m_{n-1}\right)$, we compute a corresponding path $j_{0} \rightarrow \cdots \rightarrow j_{n}$ in $\Gamma_{1}(\ell ; p)$: for each $0 \leq i<n$,

1. the 3 edges out of j_{i} are $j_{i} \rightarrow j_{i-1}, j_{i} \rightarrow \alpha$, and $j_{i} \rightarrow \beta$ with $\alpha>\beta$
2. if $m_{i}=0$, then set $j_{i+1}=\alpha$; otherwise, set $j_{i+1}=\beta$

The hash value is $H(m)=\pi\left(j_{n}\right)$.
Solving the isogeny problem for $\ell=2 \Longrightarrow$ finding preimages for this hash.

$$
g>1
$$

Higher dimensions: superspecial and supersingular

A g-dimensional PPAV \mathcal{A} is
Supersingular if all slopes of the Newton polygon of its Frobenius are 1/2.
Any supersingular \mathcal{A} is isogenous to a product of supersingular ECs.
Superspecial if Frobenius acts as 0 on $H^{1}\left(\mathcal{A}, \mathcal{O}_{\mathcal{A}}\right)$.
Any superspecial \mathcal{A} is isomorphic to a product of supersingular ECs, though generally only as unpolarized AVs.

- Superspecial \Longrightarrow supersingular.
- Superspeciality is preserved by (ℓ, \ldots, ℓ)-isogeny.

The superspecial set

For each $g>0$ and prime p, we define

$$
S_{g}(p):=\left\{\text { superspecial PPAVs over } \mathbb{F}_{p^{2}}\right\} / \cong .
$$

We have

$$
\# S_{g}(p)=O\left(p^{g(g+1) / 2}\right)
$$

(with much more precise statements for $g \leq 3$).

The superspecial graph

For primes $\ell \neq p$, we let $\Gamma_{g}(\ell ; p)$ be the (ℓ, \ldots, ℓ)-isogeny graph on $S_{g}(p)$.
The graph $\Gamma_{g}(\ell ; p)$ is connected and $N_{g}(\ell)$-regular, where

$$
N_{g}(\ell):=\sum_{d=0}^{g}\left[\begin{array}{l}
g \\
d
\end{array}\right]_{\ell} \cdot \ell^{(g-d+1)}
$$

where $\left[\begin{array}{l}n \\ k\end{array}\right]_{\ell}:=\frac{(n)_{\ell} \cdots(n-k+1)_{\ell}}{(k)_{\ell} \cdots(1)_{\ell}}$, where $(i)_{\ell}:=\frac{\ell^{i}-1}{\ell-1}$ counts the k-diml subspaces of \mathbb{F}_{ℓ}^{n}.
Expander hypothesis: we assume $\Gamma_{g}(\ell ; p)$ is Ramanujan.
If the hypothesis fails, then our algorithm might be less efficient, but commensurately so with the cryptosystems that it attacks.

Generalizing CGL to genus 2: Takashima

Takashima was the first to generalize CGL to AVs of dimension $g=2$.
Takashima's hash works exactly like CGL, but

- $S_{1}(p)$ becomes $S_{2}(p)$ (Takashima wants to use the full supersingular graph, but ends up stuck in the superspecial component)
- $\Gamma_{1}(2 ; p)$ becomes $\Gamma_{2}(2 ; p)$: i.e. 2-isogenies become $(2,2)$-isogenies,

To compute the walks in $\Gamma_{2}(2 ; p)$, Takashima uses

- supersingular genus-2 curves to represent the vertices (with the j-invariant becomes the Igusa-Clebsch invariants), and
- Richelot's formulæ to compute the isogeny steps

Note that $\Gamma_{1}(2 ; p)$ is 15-regular, so the data to be hashed is coded in base ≤ 14 !

Trivial 4-cycles in the genus-2 graph

Flynn and Ti observe a serious issue with Takashima's hash function: It is easy to construct cycles of length 4 starting at any vertex of $\Gamma_{2}(\ell ; p)$.

Take $P \in \mathcal{A}_{0}\left[\ell^{2}\right], Q, R \in \mathcal{A}_{0}[\ell]$ s.t. $e_{\ell}([\ell] P, R)=e_{\ell}([\ell] P, Q)=1$; form (ℓ, ℓ)-isogenies

$$
\begin{aligned}
\phi_{0}: \mathcal{A}_{0} \longrightarrow \mathcal{A}_{1}=\mathcal{A}_{0} / K_{0} & \text { where } K_{0}:=\langle[\ell] P, Q\rangle \\
\phi_{0}^{\prime}: \mathcal{A}_{0} \longrightarrow \mathcal{A}_{1}^{\prime}=\mathcal{A}_{0} / K_{0}^{\prime} & \text { where } K_{0}^{\prime}:=\langle[\ell] P, Q\rangle \\
\phi_{1}: \mathcal{A}_{1} \longrightarrow \mathcal{A}_{2}=\mathcal{A}_{1} / K_{1} & \text { where } K_{1}:=\phi_{0}\left(K_{0}^{\prime}\right) \\
\phi_{1}^{\prime}: \mathcal{A}_{1} \longrightarrow \mathcal{A}_{2}^{\prime}=\mathcal{A}_{1} / K_{1}^{\prime} & \text { where } K_{1}^{\prime}:=\phi_{0}^{\prime}\left(K_{0}\right)
\end{aligned}
$$

Now $\operatorname{ker}\left(\phi_{1} \circ \phi_{0}\right)=\operatorname{ker}\left(\phi_{1}^{\prime} \circ \phi_{0}^{\prime}\right)$, so $\mathcal{A}_{2} \cong \mathcal{A}_{2}^{\prime}$, and so we get a cycle

$$
\mathcal{A}_{0} \xrightarrow{\phi_{0}} \mathcal{A}_{1} \xrightarrow{\phi_{1}} \mathcal{A}_{2} \cong \mathcal{A}_{2}^{\prime} \xrightarrow{\left(\phi_{1}^{\prime}\right)^{\dagger}} \mathcal{A}_{1}^{\prime} \xrightarrow{\left(\phi_{0}^{\prime}\right)^{\dagger}} \mathcal{A}_{0} .
$$

\Longrightarrow in $g>1$, non-backtracking is not strong enough to avoid hash collisions.

Generalizing CGL to genus 2: Castryck-Decru-Smith

Castryck-Decru-S. (Nutmic 2019): an attempt to fix Takashima.

- Explicitly restriction to the superspecial graph $\Gamma_{2}(2 ; p)$
- New rule for isogeny walks to replace non-backtracking: for each (2,2)-isogeny $\phi_{i}: \mathcal{A}_{i} \rightarrow \mathcal{A}_{i+1}$, we must choose one of the eight $(2,2)$-isogenies $\phi_{i+1}: \mathcal{A}_{i+1} \rightarrow \mathcal{A}_{i+2}$ such that $\phi_{i+1} \circ \phi_{i}$ is a (4,4)-isogeny.

Implementation: again, represent vertices with (Jacobians of) genus-2 curves, and compute edges using Richelot isogenies.

The superspecial genus 2 graph

Minor inconvenience: there are two types of PPAVs in dimension $g=2$: Jacobians of genus-2 curves, and elliptic products.

- Isomorphism invariants are incompatible
- Richelot's formulæ break down when the codomain is an elliptic product Partition $S_{2}(p)$ into corresponding subsets, $S_{2}(p)^{\prime}$ and $S_{2}(p)^{E}$; then

$$
\# S_{2}(p)^{J}=\frac{1}{2880} p^{3}+\frac{1}{120} p^{2} \quad \text { and } \quad \# S_{2}(p)^{E}=\frac{1}{288} p^{2}+O(p)
$$

Being a proof of concept, CDS takes a simple solution: fail on elliptic products. Justification: a random $\mathcal{A} \in S_{2}(p)$ has only a $O(1 / p)$ chance of being in $S_{2}(p)^{E}$.

The superspecial genus 2 graph

Minor inconvenience: there are two types of PPAVs in dimension $g=2$: Jacobians of genus-2 curves, and elliptic products.

- Isomorphism invariants are incompatible
- Richelot's formulæ break down when the codomain is an elliptic product

Partition $S_{2}(p)$ into corresponding subsets, $S_{2}(p)^{\prime}$ and $S_{2}(p)^{E}$; then

$$
\# S_{2}(p)^{J}=\frac{1}{2880} p^{3}+\frac{1}{120} p^{2} \quad \text { and } \quad \# S_{2}(p)^{E}=\frac{1}{288} p^{2}+O(p)
$$

Being a proof of concept, CDS takes a simple solution: fail on elliptic products. Justification: a random $\mathcal{A} \in S_{2}(p)$ has only a $O(1 / p)$ chance of being in $S_{2}(p)^{E}$. Bad news: from a cryptanalytic point of view, this is not rare enough.

Solving the isogeny problem in $g>1$

Results

Theorem (Costello-S., PQCrypto 2020):

1. There exists a classical algorithm which solves isogeny problems in $\Gamma_{g}(\ell ; p)$ with probability $\geq 1 / 2^{g-1}$ in expected time $\widetilde{O}\left(\left(p^{g-1} / P\right)\right)$ on P processors as $p \rightarrow \infty$ (with ℓ fixed).
2. There exists a quantum algorithm which solves isogeny problems in $\Gamma_{g}(\ell ; p)$ in expected time $\widetilde{O}\left(\sqrt{p^{g-1}}\right)$ as $p \rightarrow \infty$ (with ℓ fixed).

This talk: the classical algorithm.
Details: https://eprint.iacr.org/2019/1387

Attacking the isogeny problem

Recall: if we just view $\Gamma_{g}(\ell ; p)$ as a generic $N_{g}(\ell)$-regular Ramanujan graph, then solving the path-finding problem would cost $O\left(p^{g(g+1) / 4}\right)$ (classical) isogeny steps.

Key observation: in $g=2$, we have $\# S_{2}(p)^{E}>\sqrt{\# S_{2}(p)^{J}}$. This pattern continues in $g>2$. We beat square-root algorithms by exploiting this special subset. Let's look at the algorithm for $g=2$ first. Recursive application will give $u s g>2$.

The algorithm in $g=2$: Step 1

The algorithm in dimension $g=2$ (attacking Takashima and Castryck-Decru-S.):

The algorithm in $g=2$: Step 1

The algorithm in dimension $g=2$ (attacking Takashima and Castryck-Decru-S.):
Step 1: Compute paths from our target PPASes into elliptic product vertices:

$$
\begin{aligned}
\phi: \mathcal{A} & \rightarrow \cdots \rightarrow \mathcal{E}_{1} \times \mathcal{E}_{2} \in S_{2}(p)^{E} \\
\phi^{\prime} & : \mathcal{A}^{\prime} \rightarrow \cdots \rightarrow \mathcal{E}_{1}^{\prime} \times \mathcal{E}_{2}^{\prime} \in S_{2}(p)^{E}
\end{aligned}
$$

Expander hypothesis \Longrightarrow we find ϕ (and ϕ^{\prime}) after $O(p)$ random walks of length in $O(\log p)$: total cost is $\widetilde{O}(p / P)$ isogeny steps on P classical processors.
It remains to compute a path $\mathcal{E}_{1} \times \mathcal{E}_{2} \rightarrow \cdots \rightarrow \mathcal{E}_{1}^{\prime} \times \mathcal{E}_{2}^{\prime}$ in $\Gamma_{2}(\ell ; p)$ in $\widetilde{O}(p)$ steps.

The algorithm in $g=2$: Step 2

Step 2: to compute a path $\mathcal{E}_{1} \times \mathcal{E}_{2} \rightarrow \cdots \rightarrow \mathcal{E}_{1}^{\prime} \times \mathcal{E}_{2}^{\prime}$ in $\Gamma_{2}(\ell ; p)$,

1. Compute paths $\psi_{1}: \mathcal{E}_{1} \rightarrow \cdots \rightarrow \mathcal{E}_{1}^{\prime}$ and $\psi_{2}: \mathcal{E}_{2} \rightarrow \cdots \rightarrow \mathcal{E}_{2}^{\prime}$ in $\Gamma_{1}(\ell ; p)$.

The algorithm in $g=2$: Step 2

Step 2: to compute a path $\mathcal{E}_{1} \times \mathcal{E}_{2} \rightarrow \cdots \rightarrow \mathcal{E}_{1}^{\prime} \times \mathcal{E}_{2}^{\prime}$ in $\Gamma_{2}(\ell ; p)$,

1. Compute paths $\psi_{1}: \mathcal{E}_{1} \rightarrow \cdots \rightarrow \mathcal{E}_{1}^{\prime}$ and $\psi_{2}: \mathcal{E}_{2} \rightarrow \cdots \rightarrow \mathcal{E}_{2}^{\prime}$ in $\Gamma_{1}(\ell ; p)$.
2. If length $\left(\psi_{1}\right) \not \equiv$ length $\left(\psi_{2}\right)(\bmod 2)$, then go back to Step 1 (or $\operatorname{swap} \mathcal{E}_{1} \leftrightarrow \mathcal{E}_{2}$).
3. Trivially stretch the shorter of the ψ_{i} to the same length as the other, by stepping back and forth on the last component isogeny.

The algorithm in $g=2$: Step 2

Step 2: to compute a path $\mathcal{E}_{1} \times \mathcal{E}_{2} \rightarrow \cdots \rightarrow \mathcal{E}_{1}^{\prime} \times \mathcal{E}_{2}^{\prime}$ in $\Gamma_{2}(\ell ; p)$,

1. Compute paths $\psi_{1}: \mathcal{E}_{1} \rightarrow \cdots \rightarrow \mathcal{E}_{1}^{\prime}$ and $\psi_{2}: \mathcal{E}_{2} \rightarrow \cdots \rightarrow \mathcal{E}_{2}^{\prime}$ in $\Gamma_{1}(\ell ; p)$.
2. If length $\left(\psi_{1}\right) \not \equiv \operatorname{length}\left(\psi_{2}\right)(\bmod 2)$, then go back to Step 1 (or swap $\mathcal{E}_{1} \leftrightarrow \mathcal{E}_{2}$).
3. Trivially stretch the shorter of the ψ_{i} to the same length as the other, by stepping back and forth on the last component isogeny.
4. Compose the products of the i-th components of ψ_{1} and ψ_{2} to get a path

$$
\psi^{\times}: \mathcal{E}_{1} \times \mathcal{E}_{2} \rightarrow \cdots \rightarrow \mathcal{E}_{1}^{\prime} \times \mathcal{E}_{2}^{\prime} \quad \text { in } \Gamma_{2}(\ell ; p)
$$

Cost: same as solving the isogeny problem in $\Gamma_{1}(\ell ; p)$, i.e. $O(\sqrt{p} / P)$.
The composition $\left(\phi^{\prime}\right)^{\dagger} \circ \psi^{\times} \circ \phi$ is a path from \mathcal{A} to \mathcal{A}^{\prime} in $\Gamma_{2}(\ell ; p)$.
We can thus solve the isogeny problem in $\Gamma_{2}(\ell ; p)$ in $\widetilde{O}(p)$ isogeny steps.

Attacking higher genus

The same idea works in higher dimension as follows.
Recall: $\# S_{g}(p)=O\left(p^{g(g+1) / 2}\right)$, so classical square-root algorithms solve the isogeny problem in $\Gamma_{g}(\ell ; p)$ in $O\left(p^{g(g+1) / 4}\right)$ isogeny steps.
Let $T_{g}(p)$ be the image of $S_{1}(p) \times S_{g-1}(p)$ in $S_{g}(p)$ (product polarization).
We have $\# S_{1}(p)=O(p)$ and $\# S_{g-1}(p)=O\left(p^{g(g-1) / 2}\right)$, so

$$
\# T_{g}(p)=O\left(p^{\left(g^{2}-g+2\right) / 2}\right) ;
$$

so the probability that a random \mathcal{A} in $S_{g}(p)$ is in $T_{g}(p)$ is in $O\left(1 / p^{(g-1)}\right)$. Key observation: $g-1<g(g+1) / 4$ (and much smaller for large g). We should be able to efficiently recognise steps into $T_{g}(p)$ by something analogous to the breakdown in Richelot's formulæ in $g=2$ (theta relations?).

Solving the general isogeny problem

To find a path from \mathcal{A} to \mathcal{A}^{\prime} in $\Gamma_{g}(\ell ; p)$:

1. Compute paths $\phi: \mathcal{A} \rightarrow \mathcal{E} \times \mathcal{B} \in T_{g}(p)$ and $\phi^{\prime}: \mathcal{A}^{\prime} \rightarrow \mathcal{E}^{\prime} \times \mathcal{B}^{\prime} \in T_{g}(p)$ in $\Gamma_{g}(\ell ; p)$ Expander hypothesis $\Longrightarrow \widetilde{O}\left(p^{g-1} / P\right)$ isogeny steps. Dominant step
2. Compute a path $\psi_{E}: \mathcal{E} \rightarrow \cdots \rightarrow \mathcal{E}^{\prime}$ in $\Gamma_{1}(\ell ; p)$ Usual elliptic algorithm $\Longrightarrow O(\sqrt{p} / P)$ isogeny steps
3. Recurse to compute a path $\psi_{B}: \mathcal{B} \rightarrow \cdots \rightarrow \mathcal{B}^{\prime}$ in $\Gamma_{g-1}(\ell ; p)$

Expander hypothesis $\Longrightarrow \widetilde{O}\left(p^{g-2} / P\right)$ isogeny steps
4. Apply the elliptic isogeny-glueing technique to get the final path.

Probability of compatible lengths: $1 / 2^{9-1}$.
Total cost: $\widetilde{O}\left(p^{g-1} / P\right)$, dominated by the cost of walking into $T_{g}(p)$ in Step 1. Much faster than $O\left(p^{g(g+1) / 4}\right)$.

Cryptographic implications

Isogeny-based hashing in $g>1$ is much less efficient than the elliptic equivalent.
Question: what about SIDH analogues? The isogeny paths produced by our algorithms are too long to represent SIDH-type cryptosystem keys.

However, they allow us to connect target PPAVs with PPAVs with known endomorphism ring, and then KLPT-style techniques let us shorten the paths.

There is a lot of detail to work out here (good thing we have ANR CIAO).
Conclusion: supersingular isogeny-based cryptosystems in dimension $g>1$ are likely to be uncompetitive with elliptic equivalents.

