The supersingular isogeny problem in genus 2 and beyond

Craig Costello and Benjamin Smith
ANR CIAO Kickoff meeting, Bordeaux, February 2020

Microsoft Research and Inria + Ecole polytechnique






The supersingular isogeny graph

For each prime p, we let S1(p) be the set of supersingular elliptic curves over Fp,
up to Fp-isomorphism:
#5(p) ~ |p/12];

we can view Si(p) C Fp. via the j-invariant.
For primes ¢ # p, we let ['1(¢; p) be the ¢-isogeny graph on Si(p). This is
- A directed multigraph (but almost a graph)
- Connected
- (£+1)-regular
- Ramanujan (excellent expansion properties)

Random walks in I'1(¢; p) of length O(log p) give a uniform distribution on S;(p).



Supersingular isogeny problem

The general supersingular elliptic isogeny problem for fixed

Given € and &’ in Sq(p), find a path from £ to £ in T1(¢; p)

classical solution in O(y/#51(p)) = O(v/P
quantum solution in O(y/#51(p)) = O(/P)

This general problem (our focus today) is related to the security of the
Charles-Goren-Lauter hash function.

SIDH security is related to the special problem of finding very short paths
(length < log p. Solving the general problem has important implications for this
short-path problem (not in this talk).



The Charles—Goren-Lauter hash function

Charles-Goren-Lauter (2009): a hash function with provable collision-resistance
properties. System parameters:

- Aprime p, an ordering on Fp (hence on S4(p)), and a linear map 7 : F; — Fp
* An edge j 1 — jo in T1(2; p)

To compute the hash of an n-bit message m = (mo,...,my_1),
we compute a corresponding path jo — --- — j, In [1(¢; p): foreach 0 </ < n,

1. the 3 edges out of j; are j; — Ji_1, Ji = «, and j; — B with a > 8
2. if m; =0, then set jj,; = o; otherwise, set ., =

The hash value is H(m) = 7(jn).

Solving the isogeny problem for £ =2 = finding preimages for this hash.



g>1




Higher dimensions: superspecial and supersingular

A g-dimensional PPAV A is

Supersingular if all slopes of the Newton polygon of its Frobenius are 1/2.
Any supersingular A is isogenous to a product of supersingular ECs.

Superspecial if Frobenius acts as 0 on H'(A, O ).
Any superspecial A is isomorphic to a product of supersingular ECs,
though generally only as unpolarized AVs.

- Superspecial = supersingular.
- Superspeciality is preserved by (4,...,£)-isogeny.



The superspecial set

For each g > 0 and prime p, we define
S¢(p) := {superspecial PPAVs over F, } /==.

We have
#Sg(p) = O(p99/2)

(with much more precise statements for g < 3).



The superspecial graph

For primes ¢ # p, we let [4(¢; p) be the (¢,. .., ¢)-isogeny graph on Sq(p).
The graph I'4(¢; p) is connected and Ng(¢)-regular, where

057

d=0

where [}], := W where (i), := 4=1 counts the k-diml subspaces of F}.

Expander hypothesis: we assume [4(¢; p) is Ramanujan.

If the hypothesis fails, then our algorithm might be less efficient,
but commensurately so with the cryptosystems that it attacks.



Generalizing CGL to genus 2: Takashima

Takashima was the first to generalize CGL to AVs of dimension g = 2.
Takashima's hash works exactly like CGL, but

- S1(p) becomes Sy(p) (Takashima wants to use the full supersingular graph,
but ends up stuck in the superspecial component)
- T1(2; p) becomes I',(2; p): i.e. 2-isogenies become (2,2)-isogenies,

To compute the walks in I';(2; p), Takashima uses

- supersingular genus-2 curves to represent the vertices (with the j-invariant
becomes the Igusa-Clebsch invariants), and
- Richelot’s formulae to compute the isogeny steps

Note that I'1(2; p) is 15-regular, so the data to be hashed is coded in base < 14!



Trivial 4-cycles in the genus-2 graph

Flynn and Ti observe a serious issue with Takashima'’s hash function:
It is easy to construct cycles of length 4 starting at any vertex of I',(¢; p).

Take P € Ao[f?], Q,R € Ao[f] st. es([£]P,R) = eu([¢]P, Q) = 1; form (¢, £)-isogenies

¢o :Ag — A1 = Ao /Ko where Koy := ([{]P, Q)
o6 Ao — A = Ao /Kb where Ky := ([¢]P, Q)
O A — Ay = A /K where Kq := ¢o(Kj)
¢ A — Ay = A /K] where K; := ¢4(Ko)

Now ker(¢1 o ¢g) = ker(¢ o ¢(), so A, = A), and so we get a cycle

IR NI C IR

= in g > 1, non-backtracking is not strong enough to avoid hash collisions.



Generalizing CGL to genus 2: Castryck-Decru-Smith

Castryck-Decru-S. (Nutmic 2019): an attempt to fix Takashima.

- Explicitly restriction to the superspecial graph I';(2; p)

- New rule for isogeny walks to replace non-backtracking:
for each (2,2)-isogeny ¢; : Ai — A4, we must choose one of the eight
(2,2)-isogenies ¢j 1 : Aj 1 — Ajyp such that ¢4 0 ¢ is a (4, 4)-isogeny.

Implementation: again, represent vertices with (Jacobians of) genus-2 curves,
and compute edges using Richelot isogenies.



The superspecial genus 2 graph

Minor inconvenience: there are two types of PPAVs in dimension g = 2:
Jacobians of genus-2 curves, and elliptic products.

- Isomorphism invariants are incompatible
- Richelot's formula break down when the codomain is an elliptic product

Partition S;(p) into corresponding subsets, S;(p) and Sy(p)E; then

1

2
= 5ggP T o(p)-

1 1
#52(p)J = mﬁﬁ + @PZ and #SZ(P)E

Being a proof of concept, CDS takes a simple solution: fail on elliptic products.
Justification: a random A € S,(p) has only a O(1/p) chance of being in Sy(p)E.

10



The superspecial genus 2 graph

Minor inconvenience: there are two types of PPAVs in dimension g = 2:
Jacobians of genus-2 curves, and elliptic products.

- Isomorphism invariants are incompatible
- Richelot's formula break down when the codomain is an elliptic product

Partition S;(p) into corresponding subsets, S;(p) and Sy(p)E; then

1

2
= 5ggP T o(p)-

1 1
#52(p)J = mﬁﬁ + @PZ and #SZ(P)E

Being a proof of concept, CDS takes a simple solution: fail on elliptic products.
Justification: a random A € S,(p) has only a O(1/p) chance of being in Sy(p)E.

Bad news: from a cryptanalytic point of view, this is not rare enough.

10



Solving the isogeny problem in g > 1




Theorem (Costello-S., PQCrypto 2020):

1. There exists a classical algorithm which solves isogeny problems in ['4(¢; p)
with probability > 1/29~" in expected time O((p9~"/P)) on P processors as
p — oo (with £ fixed).

2. There exists a quantum algorithm which solves isogeny problems in [y (¢; p)
in expected time O(y/p9—7) as p — oo (with ¢ fixed).

This talk: the classical algorithm.

Details: https://eprint.iacr.org/2019/1387

1


https://eprint.iacr.org/2019/1387

Attacking the isogeny problem

Recall: if we just view ['4(¢; p) as a generic Ng(¢)-regular Ramanujan graph, then
solving the path-finding problem would cost O(p9(9+1/4) (classical) isogeny steps.

Key observation: in g = 2, we have #S,(p)f > \/#5S,(p)’. This pattern continues
in g > 2. We beat square-root algorithms by exploiting this special subset.

Let's look at the algorithm for g = 2 first. Recursive application will give us g > 2.

12



The algorithm in g = 2: Step 1

The algorithm in dimension g = 2 (attacking Takashima and Castryck-Decru-S.):

13



The algorithm in g = 2: Step 1

The algorithm in dimension g = 2 (attacking Takashima and Castryck-Decru-S.):

Step 1: Compute paths from our target PPASes into elliptic product vertices:

p: A== E xE eSp)E
¢/:A/_>..._>€1/X5£€SZ(D)E

Expander hypothesis = we find ¢ (and ¢') after O(p) random walks of length
in O(log p): total cost is 5(p/P) isogeny steps on P classical processors.

It remains to compute a path & x & — -+ = & x & in [L(¢; p) in 5(p) steps.

13



The algorithm in g = 2: Step 2

Step 2: to compute a path & x & — -+ — & x & in T1(¢; p),
1. Compute paths ¢y : & — --- = E1and Y, : & — -+ — & in T4(¢; p).



The algorithm in g = 2: Step 2

Step 2: to compute a path & x & — -+ — & x & in T1(¢; p),

1. Compute paths ¢y : & — --- = E1and Y, : & — -+ — & in T4(¢; p).
2. If length(w1) # length(z;) (mod 2), then go back to Step 1 (or swap & « &).
3. Trivially stretch the shorter of the ¢ to the same length as the other,

by stepping back and forth on the last component isogeny.



The algorithm in g = 2: Step 2

Step 2: to compute a path & x & — -+ — & x & in T1(¢; p),

1. Compute paths ¢y : & — --- = E1and Y, : & — -+ — & in T4(¢; p).
2. If length(w1) # length(z;) (mod 2), then go back to Step 1 (or swap & « &).
3. Trivially stretch the shorter of the ¢ to the same length as the other,
by stepping back and forth on the last component isogeny.
4. Compose the products of the i-th components of ¥ and ), to get a path

P EXE - EXE inTp).
Cost: same as solving the isogeny problem in I'1(¢; p), i.e. O(/p/P).
The composition (¢')T o 9> o ¢ is a path from A to A in (¢; p).
We can thus solve the isogeny problem in I';(¢; p) in 5(/3) isogeny steps.



Attacking higher genus

The same idea works in higher dimension as follows.

Recall: #S4(p) = O(p919+1/2), so classical square-root algorithms solve the
isogeny problem in T4(¢; p) in O(p9(9+1/4) isogeny steps.

Let T4(p) be the image of S1(p) x Sg—1(p) in Sg(p) (product polarization).
We have #51(p) = O(p) and #S4_1(p) = 0(p99-1/2), so

#T,4(p) = O(p(92*9+2)/2);
so the probability that a random A in Sg(p) is in Tg(p) is in 0(1/p(94)),
Key observation: g — 1 < g(g + 1)/4 (and much smaller for large g).

We should be able to efficiently recognise steps into T4(p) by something
analogous to the breakdown in Richelot’s formulae in g = 2 (theta relations?).

15



Solving the general isogeny problem

To find a path from A to A" in [4(¢; p):

1. Compute paths ¢ : A - Ex B e Ty(p)and ¢’ : A" = & x B € Ty(p) inT4(¢; p)
Expander hypothesis — 5(p9‘1/P) isogeny steps. Dominant step
2. Compute a path g : & — -+ = & in[1(4; p)
Usual elliptic algorithm = O(y/p/P) isogeny steps
3. Recurse to compute a path g : B — --- — B’ in [g_1(¢; p)
Expander hypothesis —> 5(p9*2/P) isogeny steps
4. Apply the elliptic isogeny-glueing technique to get the final path.
Probability of compatible lengths: 1/297".

Total cost: 5(p9—1/P), dominated by the cost of walking into Ty¢(p) in Step 1.
Much faster than O(p9(9+1)/4),



Cryptographic implications

Isogeny-based hashing in g > 1is much less efficient than the elliptic equivalent.

Question: what about SIDH analogues? The isogeny paths produced by our
algorithms are too long to represent SIDH-type cryptosystem keys.

However, they allow us to connect target PPAVs with PPAVs with known
endomorphism ring, and then KLPT-style techniques let us shorten the paths.

There is a lot of detail to work out here (good thing we have ANR CIAO).

Conclusion: supersingular isogeny-based cryptosystems in dimension g > 1
are likely to be uncompetitive with elliptic equivalents.



	g = 1 
	g > 1 
	Solving the isogeny problem in g > 1 

