Computation of ℓ-Isogenies in $\tilde{O}(\sqrt{\ell})$

Antonin Leroux

DGA, Institut Polytechnique de Paris, Ecole Polytechnique

Joint work with D. J. Bernstein, L. De Feo, B. Smith

Summary

1. Computing Isogenies
2. A Generalization

Computing Isogenies

Isogeny formula on Montgomery Elliptic Curves

Cyclic isogeny φ of odd degree with kernel $G=\langle P\rangle \subset E[\ell]$ on

$$
\begin{array}{r}
E / \mathbb{F}_{q}: y^{2}=x^{3}+A x^{2}+x \\
\text { is }^{1} \varphi:(x, y) \mapsto\left(f(x), c_{0} y f^{\prime}(x)\right) \text { with } \\
f(x)=x \prod_{g \in G} \frac{x x_{g}-1}{x-x_{g}}
\end{array}
$$

${ }^{1}$ See Renes, "Computing Isogenies Between Montgomery Curves Using the Action of (0, 0)"

Isogeny formula on Montgomery Elliptic Curves

Cyclic isogeny φ of odd degree with kernel $G=\langle P\rangle \subset E[\ell]$ on

$$
E / \mathbb{F}_{q}: y^{2}=x^{3}+A x^{2}+x
$$

is $^{1} \varphi:(x, y) \mapsto\left(f(x), c_{0} y f^{\prime}(x)\right)$ with

$$
f(x)=x \prod_{g \in G} \frac{x x_{g}-1}{x-x_{g}}
$$

Efficiently evaluate $P_{G}(x)=\prod_{g \in G}\left(x-x_{g}\right) \Rightarrow$ Efficiently compute φ.
${ }^{1}$ See Renes, "Computing Isogenies Between Montgomery Curves Using the Action of (0, 0)"

Decomposing the polynomial in a BSGS fashion

Goal: Evaluate $P_{G}(x)$.
${ }^{2}$ all complexities are given in terms of \mathbb{F}_{q} operations

Decomposing the polynomial in a BSGS fashion

Goal: Evaluate $P_{G}(x)$.
Complexity ${ }^{2}$: Naive method in $O(\ell)$, today in $\tilde{O}(\sqrt{\ell})$.

[^0]
Decomposing the polynomial in a BSGS fashion

Goal: Evaluate $P_{G}(x)$.
Complexity ${ }^{2}$: Naive method in $O(\ell)$, today in $\tilde{O}(\sqrt{\ell})$.
Take $m=\lfloor\sqrt{\ell}\rfloor$ and $\left\{\begin{array}{l}G_{1}=\{P,[2] P \ldots,[m-1] P\} \\ G_{2}=\{[2 m] P,[4 m] P, \ldots,[m(m-1)] P\}\end{array}\right.$

[^1]
Decomposing the polynomial in a BSGS fashion

Goal: Evaluate $P_{G}(x)$.
Complexity ${ }^{2}$: Naive method in $O(\ell)$, today in $\tilde{O}(\sqrt{\ell})$.
Take $m=\lfloor\sqrt{\ell}\rfloor$ and $\left\{\begin{array}{l}G_{1}=\{P,[2] P \ldots,[m-1] P\} \\ G_{2}=\{[2 m] P,[4 m] P, \ldots,[m(m-1)] P\}\end{array}\right.$

$$
P_{G}(x)=\prod_{P_{1} \in G_{1}, P_{2} \in G_{2}}\left(x-x_{P_{1} \oplus P_{2}}\right)\left(x-x_{P_{1} \ominus P_{2}}\right) R(x)=P_{G_{1}, G_{2}}(x) R(x)
$$

[^2]
Decomposing the polynomial in a BSGS fashion

Goal: Evaluate $P_{G}(x)$.
Complexity ${ }^{2}$: Naive method in $O(\ell)$, today in $\tilde{O}(\sqrt{\ell})$.
Take $m=\lfloor\sqrt{\ell}\rfloor$ and $\left\{\begin{array}{l}G_{1}=\{P,[2] P \ldots,[m-1] P\} \\ G_{2}=\{[2 m] P,[4 m] P, \ldots,[m(m-1)] P\}\end{array}\right.$

$$
\begin{gathered}
P_{G}(x)=\prod_{P_{1} \in G_{1}, P_{2} \in G_{2}}\left(x-x_{P_{1} \oplus P_{2}}\right)\left(x-x_{P_{1} \ominus P_{2}}\right) R(x)=P_{G_{1}, G_{2}}(x) R(x) \\
R(x)=P_{G_{1}}(x) P_{G_{2}}(x) \prod_{0 \leq 2 i+1 \leq m}\left(x-x_{[(2 i+1) m] P}\right) \prod_{m^{2} \leq i \leq \ell-1}\left(x-x_{[i] P}\right)
\end{gathered}
$$

${ }^{2}$ all complexities are given in terms of \mathbb{F}_{q} operations

Decomposing the polynomial in a BSGS fashion

Goal: Evaluate $P_{G}(x)$.
Complexity ${ }^{2}$: Naive method in $O(\ell)$, today in $\tilde{O}(\sqrt{\ell})$.
Take $m=\lfloor\sqrt{\ell}\rfloor$ and $\left\{\begin{array}{l}G_{1}=\{P,[2] P \ldots,[m-1] P\} \\ G_{2}=\{[2 m] P,[4 m] P, \ldots,[m(m-1)] P\}\end{array}\right.$

$$
\begin{gathered}
P_{G}(x)=\prod_{P_{1} \in G_{1}, P_{2} \in G_{2}}\left(x-x_{P_{1} \oplus P_{2}}\right)\left(x-x_{P_{1} \ominus P_{2}}\right) R(x)=P_{G_{1}, G_{2}}(x) R(x) \\
R(x)=P_{G_{1}}(x) P_{G_{2}}(x) \prod_{0 \leq 2 i+1 \leq m}\left(x-x_{[(2 i+1) m] P}\right) \prod_{m^{2} \leq i \leq \ell-1}\left(x-x_{[i] P}\right)
\end{gathered}
$$

Evaluating $R(x)$ is in $\mathbf{O}(\sqrt{\ell})$.

[^3]
The algebraic group law

Biquadratic expression of the group law:

$$
\left\{\begin{array}{l}
x_{P_{1} \oplus P_{2}} x_{P_{1} \ominus P_{2}}=\frac{\left(1-x_{P_{1}} x_{P_{2}}\right)^{2}}{\left(x_{P_{1}}-x_{2}\right)^{2}} \\
x_{P_{1} \oplus P_{2}}+x_{P_{1} \ominus P_{2}}=2 \frac{2 \frac{P_{1}}{}+x P_{P_{2}}+x_{P_{1}} x_{P_{2}}\left(2 A+x_{P_{1}}+x_{P_{2}}\right)}{\left(x_{P_{1}-}-x_{P_{2}}\right)^{2}}
\end{array}\right.
$$

The algebraic group law

Biquadratic expression of the group law:

$$
\left\{\begin{array}{l}
x_{P_{1} \oplus P_{2}} x_{P_{1} \ominus P_{2}}=\frac{\left(1-x_{\left.P_{1} x_{P_{2}}\right)^{2}}^{\left(x_{P_{1}}-x_{P_{2}}\right)^{2}}\right.}{} \\
x_{P_{1} \oplus P_{2}}+x_{P_{1} \ominus P_{2}}=2 \frac{x_{P_{1}}+x_{P_{2}}+x_{P_{1}} x_{P_{2}}\left(2 A+x_{P_{1}}+x_{P_{2}}\right)}{\left(x_{P_{1}}-x_{P_{2}}\right)^{2}}
\end{array}\right.
$$

Grouping terms in pairs yields

$$
\begin{equation*}
\left(x-x_{P_{1} \oplus P_{2}}\right)\left(x-x_{P_{1} \ominus P_{2}}\right)=\frac{h\left(x, x_{P_{1}}, x_{P_{2}}\right)}{b\left(x_{P_{1}}, x_{P_{2}}\right)} \tag{1}
\end{equation*}
$$

Rewriting $P_{G_{1}, G_{2}}$

When x is fixed:

$$
P_{G_{1}, G_{2}}(x)=\prod_{P_{1} \in G_{1}, P_{2} \in G_{2}} \frac{h\left(x, x_{P_{1}}, x_{P_{2}}\right)}{b\left(x_{P_{1}}, x_{P_{2}}\right)}=\prod_{P_{1} \in G_{1}} \frac{H\left(x_{P_{1}}\right)}{B\left(x_{P_{1}}\right)}
$$

where $H(Y)=\prod_{P_{2} \in G_{2}} h\left(x, Y, x_{P_{2}}\right)$ has degree $2\left|G_{2}\right|$ in Y, same for B.

Rewriting $P_{G_{1}, G_{2}}$

When x is fixed:

$$
P_{G_{1}, G_{2}}(x)=\prod_{P_{1} \in G_{1}, P_{2} \in G_{2}} \frac{h\left(x, x_{P_{1}}, x_{P_{2}}\right)}{b\left(x_{P_{1}}, x_{P_{2}}\right)}=\prod_{P_{1} \in G_{1}} \frac{H\left(x_{P_{1}}\right)}{B\left(x_{P_{1}}\right)}
$$

where $H(Y)=\prod_{P_{2} \in G_{2}} h\left(x, Y, x_{P_{2}}\right)$ has degree $2\left|G_{2}\right|$ in Y, same for B.

We focus on evaluating H at $\left(x_{P_{1}}\right)_{P_{1} \in G_{1}}$, the same idea works for B.

Multi-point Evaluation

A very classical multi-point evaluation algorithm, allows us to evaluate $\prod_{i=1}^{n}\left(X-a_{i}\right)$ at b_{1}, \ldots, b_{n} in $\tilde{O}(n)$.

Multi-point Evaluation

A very classical multi-point evaluation algorithm, allows us to evaluate $\prod_{i=1}^{n}\left(X-a_{i}\right)$ at b_{1}, \ldots, b_{n} in $\tilde{O}(n)$.

Applying this on H when $\left|G_{1}\right|=\left|G_{2}\right| \simeq \sqrt{\ell} \Rightarrow\left(H\left(x_{P_{1}}\right)\right)_{P_{1} \in G_{1}}$ is evaluated in $\tilde{O}(\sqrt{\ell})$

Multi-point Evaluation

A very classical multi-point evaluation algorithm, allows us to evaluate $\prod_{i=1}^{n}\left(X-a_{i}\right)$ at b_{1}, \ldots, b_{n} in $\tilde{O}(n)$.

Applying this on H when $\left|G_{1}\right|=\left|G_{2}\right| \simeq \sqrt{\ell} \Rightarrow\left(H\left(x_{P_{1}}\right)\right)_{P_{1} \in G_{1}}$ is evaluated in $\tilde{O}(\sqrt{\ell})$
$\Rightarrow \prod_{P_{1} \in G_{1}} H\left(x_{P_{1}}\right)$ computed in $\tilde{O}(\sqrt{\ell})$ (same for B)

Multi-point Evaluation

A very classical multi-point evaluation algorithm, allows us to evaluate $\prod_{i=1}^{n}\left(X-a_{i}\right)$ at b_{1}, \ldots, b_{n} in $\tilde{O}(n)$.

Applying this on H when $\left|G_{1}\right|=\left|G_{2}\right| \simeq \sqrt{\ell} \Rightarrow\left(H\left(x_{P_{1}}\right)\right)_{P_{1} \in G_{1}}$ is evaluated in $\tilde{O}(\sqrt{\ell})$
$\Rightarrow \prod_{P_{1} \in G_{1}} H\left(x_{P_{1}}\right)$ computed in $\tilde{O}(\sqrt{\ell})$ (same for B)
$\Rightarrow P_{G_{1}, G_{2}}(x)$ is calculated in $\tilde{O}(\sqrt{\ell})$

Multi-point Evaluation

A very classical multi-point evaluation algorithm, allows us to evaluate $\prod_{i=1}^{n}\left(X-a_{i}\right)$ at b_{1}, \ldots, b_{n} in $\tilde{O}(n)$.

Applying this on H when $\left|G_{1}\right|=\left|G_{2}\right| \simeq \sqrt{\ell} \Rightarrow\left(H\left(x_{P_{1}}\right)\right)_{P_{1} \in G_{1}}$ is evaluated in $\tilde{O}(\sqrt{\ell})$
$\Rightarrow \prod_{P_{1} \in G_{1}} H\left(x_{P_{1}}\right)$ computed in $\tilde{O}(\sqrt{\ell})$ (same for B)
$\Rightarrow P_{G_{1}}, G_{2}(x)$ is calculated in $\tilde{O}(\sqrt{\ell})$
\Rightarrow Evaluation of P_{G} at x in $\tilde{O}(\sqrt{\ell})$.

Experimental Results

ℓ	q	E	Before	After
11677	$744 \ell-1$	$y^{2}=x^{3}+x$	14.880 s	0.160 s
62501	$48 \ell-1$	$y^{2}=x^{3}+6 x^{2}+x$	x	1.120 s

Table 1: Magma implementation, comparison between my implementation of the two methods

A Generalization

Can we generalize it?

Goal: Compute $P_{G}(x)=\prod_{g \in G}(x-f(g))$, where $f: G \rightarrow \mathbb{F}_{q}$.
${ }^{3}$ an additive version of this is presented in D. Chudnovsky and G. Chudnovsky, "Computer algebra in the service of mathematical physics and number theory"

Can we generalize it?

Goal: Compute $P_{G}(x)=\prod_{g \in G}(x-f(g))$, where $f: G \rightarrow \mathbb{F}_{q}$.
Multiplicative group ${ }^{3}: ~ G \cong \mu_{\ell}, f=l d$

$$
P_{G}(x)=\prod_{i=1}^{\ell}\left(X-\zeta^{i}\right)
$$

[^4]
Can we generalize it?

Goal: Compute $P_{G}(x)=\prod_{g \in G}(x-f(g))$, where $f: G \rightarrow \mathbb{F}_{q}$.
Multiplicative group ${ }^{3}: ~ G \cong \mu_{\ell}, f=l d$

$$
P_{G}(x)=\prod_{i=1}^{\ell}\left(X-\zeta^{i}\right)
$$

Elliptic curve: $G=\langle P\rangle \subset E[\ell], f(P)=x_{P}$

$$
P_{G}(x)=\prod_{i=1}^{\ell}\left(x-x_{[i] P}\right)
$$

[^5]
Can we generalize it?

Goal: Compute $P_{G}(x)=\prod_{g \in G}(x-f(g))$, where $f: G \rightarrow \mathbb{F}_{q}$.
Multiplicative group ${ }^{3}: G \cong \mu_{\ell}, f=l d$

$$
P_{G}(x)=\prod_{i=1}^{\ell}\left(X-\zeta^{i}\right)
$$

Elliptic curve: $G=\langle P\rangle \subset E[\ell], f(P)=x_{P}$

$$
P_{G}(x)=\prod_{i=1}^{\ell}\left(x-x_{[i] P}\right)
$$

Abelian variety of higher genuses?

[^6]
References

D. Chudnovsky and Gregory Chudnovsky. "Computer algebra in the service of mathematical physics and number theory". In: International Journal of Computer Mathematics - IJCM (Jan. 1990).

Joost Renes. "Computing Isogenies Between Montgomery Curves Using the Action of $(0,0)$ ". In: Post-Quantum Cryptography - 9th International Conference, PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings. 2018, pp. 229-247. DOI: 10.1007/978-3-319-79063-3_11. URL: https://doi.org/10.1007/978-3-319-79063-3_11.

[^0]: ${ }^{2}$ all complexities are given in terms of \mathbb{F}_{q} operations

[^1]: ${ }^{2}$ all complexities are given in terms of \mathbb{F}_{q} operations

[^2]: ${ }^{2}$ all complexities are given in terms of \mathbb{F}_{q} operations

[^3]: ${ }^{2}$ all complexities are given in terms of \mathbb{F}_{q} operations

[^4]: ${ }^{3}$ an additive version of this is presented in D. Chudnovsky and G. Chudnovsky, "Computer algebra in the service of mathematical physics and number theory"

[^5]: ${ }^{3}$ an additive version of this is presented in D. Chudnovsky and G. Chudnovsky, "Computer algebra in the service of mathematical physics and number theory"

[^6]: ${ }^{3}$ an additive version of this is presented in D. Chudnovsky and G. Chudnovsky, "Computer algebra in the service of mathematical physics and number theory"

