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Parameterizations by radicals

Find P € C with
Xp, yp € k(t, 3/ R(1)).

Examples by Icart, Kammerer, Lercier, Renault, Farashahi.
Encoding into and elliptic curve C over K where #K = 2 mod 3.
Contents

@ Radical morphisms,

@ Torsors,

© A general recipe,

© Genus one curves,

© Genus two curves,

© Variations,

@ Genus curves with 5-torsion and beyond.
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K afield, d > 1, and a € K*. The polynomial x4 — a is

irreducible iff
@ For every prime | dividing d, a is not the I-th power in K*,
@ If4 divides d, then —4a is not a 4-th power in K*.

For S C PP a field extension L/K is said S-radical if
L~ K[x]/(x? — a)

ford € Sand a € K* not a d-th power.
L/K is S-multiradical if

K=KyCKiC---CKy=1L

with each Kj1/K; an S-radical extension.
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Radical morphisms

f . C — D an epimorphism of (projective, smooth, absolutely
integral) curves over K is said to be a radical morphism if
K(D) c K(C) is radical.

Define similarly multiradical morphisms, S-radical morphisms,
S-multiradical morphisms.

An S-parameterization is

with p an S-multiradical map and = an epimorphism.
In this situation one says that C/K is parameterizable by
S-radicals.
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Torsors

Let I = Gal(K/K) and A a finite set acted on by I'. Then Ais a
finite -set. Define

Alg(A) = Homr (A, K).

A finite -group is a finite '-set G with a group structure
compatible with the I'-action.

If Ais a-set acted on simply transitively by a finite I'-group G,
and if the action of G on A is compatible with the actions of ' on
G and A, then Ais a G-torsor.

Torsors are classified by H'(T', G).

A finite I'-group G is said to be S-resoluble if there exists

1=GycGyc---cGc---cG=@G

with Gi1/G;j ~ pp, for some p; € S.
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Radical maps

K a finite field with characteristic p and cardinality g. S a set of
prime integers. Assume p ¢ S and SN Supp(q — 1) = 0.

f: C — D aradical morphism of degree d € S. X C C the
ramification locus let Y = f(X) C D the branch locus. Induced
map on K-points F : C(K) — D(K) is a bijection.

Proof : A branched point Q in D(K) is totally ramified, so has a
unique preimage P in C(K). For a non-branched point

Q € D(K) — Y(K) the fiber f(-")(Q) is a pgy-torsor. Since

HY (K, ug) = K*/(K*)? = 0 this torsor is pg4. Since

HO(K, ug) = ng(K) = {1} there is a unique K-rational point in
f=10(Q). O

The reciprocal map F(-1) : D(K) — C(K) can be evaluated in
deterministic polynomial time.

Jean-Marc Couveignes (with Reynald Lercier) The geometry of some parameterizations and encodings



K a finite field with characteristic p and cardinality g. S a set of
prime integers. Assume p ¢ S and SN Supp(q — 1) = 0. An
S-parameterization

induces R : D(K) — P'(K) and I : D(K) — C(K).
The composition Mo R(—1) is called an encoding.
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Tartaglia-Cardan formulae

K a field with characteristic prime to 6, I = Gal(K/K).

Sym(ug) is a acted on by I'. And 3 C Sym(ug) is normal.
Stab(1) =~ pz. SO Sym(pg) = i3 X p2.

Let (3 € K a primitive third root of unity and set v/—3 = 2¢3 + 1.
Take h(x) = x3 — s1x? 4 sp,x — s3 separable. Set

R = Roots(h) ¢ K

and
A = Bij(Roots(h), u3).

ForyeTlandfe Aset"f=~ofon~1,
Action of Sym(u3) on the left.
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Tartaglia-Cardan formulae

A = Bij(Roots(h), u3) a Sym(ug)-torsor. The quotient C = A/ 3
is a up-torsor. The quotient B = A/, is a '-set.

7N
N

/ - \

Alg(B) = K[x]/h(x Alg(C) = K[x]/x? + 3A

\/
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Tartaglia-Cardan formulae

A = Bij(Roots(h), uz) a Sym(ug)-torsor. The quotient C = A/ 3
is a up-torsor. The quotient B = A/, is a -set.
A function £ in Alg(B) C Alg(A) is

¢ B K

fr—s fD(1).

The algebra Alg(B) is generated by ¢, and the characteristic
polynomial of ¢ is h(x). So

Alg(B) =~ K[x]/h(x).
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Tartaglia-Cardan formulae

Tartaglia-Cardan formulae construct functions in Alg(A).
These functions can be constructed with radicals because
Sym(ug) = pg x ug is resoluble.

Define first 6 € Alg(C) c Alg(A) by

0: A

X!

f——= V=3(fN(Q) N (1)) (F(¢B)—=D(Q)) (F N (1)~ =1D(¢?)).

Note /—3 balances the Galois action on p3. The algebra
Alg(C) is generated by ¢ and

62 = 8155 — 5453515, — 35255 + 128353 + 1285 = —3A

is the twisted discriminant.
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Tartaglia-Cardan’s formulae

Define p € Alg(A) as

X!

p: A

f—=Yrerr ¥ H(r) = Xeuy ¢ X FD(Q).
P2 is invariant by u3 C Sym(us) so p® € Alg(C). Indeed

27 3
PP =8+ 53— ~515 — =4.

2 2 2
A variant of p is

X!

f——>,crr ' x f(r).
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Tartaglia-Cardan’s formulae

27 3
3_ .3 _ Y _>
p° = S] + 5 S3 23132 25.
and
27 9 3
3 __ a3 v e
p _31_‘_72 S3 2S1Sz+25.
Further

pp = 812 — 3sp.
The root £ of h(x) can be expressed in terms of p and p’ as

_Si+p+p

< 3
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Tartaglia-Cardan’s formulae

Alg(A) is not the Galois closure of K[x]/h(x).

Galois closure associated with the Sym({1,2,3})-torsor
Bij(R,{1,2,3}). Not resoluble.

However Alg(A) D Alg(B) ~ K|[x]/h(x) because the quotient of
Bij(Roots(h), u3) by Stab(1) € Sym(us) is isomorphic to the
quotient of Bij(R,{1,2,3}) by Stab(1) € Sym({1,2,3}).

Note that the quotient of Bij(R, {1,2,3}) by

(123) € Sym({1,2,3}) is associated with K[x]/(x? — A) while
the quotient of Bij(R, us) by (1¢¢?) € Sym(us) is associated
with K[x]/(x? + 3A).
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Curves with a uz x pp action

s
N

C P!
SetS'=Su{3}andy : D' £ D5 P!, and «’ the

composite map
D —A2B

Then (D', o', 7’) is an S’-parameterization of B. Say that C is
the resolvent of B.
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Curves with a uz x pp action

Dl
AR
A D
2N
p
B C P!
D’ isabsolutely integral:

@ When C =P' and 7 and p are trivial.

© When the uz-quotient A — C is branched at some P of C,
and 7 is not. When C has genus 1 we may compose 7 with
a translation to ensure that it is not branched at P.

© When the degree of 7 is prime to 3. The resulting
parameterization 7’ has degree prime to 3 also. We can
iterate in that case.
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Selecting curves

Find curve A with a ug x pp action. Set E = A/(ug % u2).

BVA\M*C
\.

We know how to parameterize C. We want to parameterize B.
Take E = P! (more generic).

r the number of branched points of B — E, rs the number of
simple branched points, r; the number of fully branched points.
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Selecting curves

gB:%Jrrt—z, andgA:%+2n—5, and gC:%—L

Call
m=r—3=rs+n—3
and call it the modular dimension. Genericity condition

rs+ 4n < 12—26(%+r,—2),

where €(0) =3, ¢(1) = 1, and ¢(n) = 0 for n > 2.

@ Setgc=0.Sors =2, gg=r;— 1and the genericity
condition reads r; < 2. Only r; = 2 is of interest. Farashahi
and Kammerer, Lercier, Renault.

©Q Setgc =1. Sors =4 and gg = r;. The genericity
assumption reads r; < 2. The case r; = 2 provides
encodings for genus 2 curves.
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B C
E
gc=0,95=1, ga=2,and B — P' has degree 3 with two fully
branched points and two simply branched points.

Call Py and P, the two fully ramified points. Assume
Po, P € B(K). The difference Py — P is in Jg[3].

Jean-Marc Couveignes (with Reynald Lercier) The geometry of some parameterizations and encodings



Genus 1 curve with 3-torsion

Genus 1 curve B/K and two points Py, P in B(K) s. t.

Ps — Py has order 3. z € K(B) with divisor 3(Py — Px).

o : B — B involution sending Py onto P..

There exists app € K* 8. 1. 0(2) x z = app.

x a degree 2 function, invariant by o, with (x)o. = Py + Pwo.
The sum z + o(z) belongs to K(x). As a function on P! it has a
single pole of multiplicity 3 at x = oc.

40,0
Z+77 :x3+a171x+a071.

The image of x x z: B — P! x P! has equation

2024 (X13 + 31’1X1X02 + ao,1X03> = Xg (212 + 3070202> .
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Genus 1 curve with 3-torsion

2024 (X13 + 8171X1Xg + 30,1X03) = Xg’ <Z12 + 8070202) .

B* c P! x P! with arithmetic genus 2. Call S = (j, k) the
singular point. We find

a0 = k%, aiq = —3/%, aos =2k +2j°.

z2+k2:z<x3—3j2x+2(k+j3)). (1)

This is a degree 3 equation in x with twisted discriminant
81(1 — k/z)? times

h(z) = 22— (2k+4/%)z + k2.

The resolvent C has equation t2 = h(z) and genus 0. We can
parameterize B with cubic radicals.
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BVAwiC
.

gc=1,98=2,9ga =5, and B — P' has degree 3 with two fully
branched points and four simply branched points.

Call Py and P, the two fully ramified points. Assume

Po, P € B(K). The difference Py — P is in Jg[3].
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Genus 2 curve with 3-torsion

Genus 2 curve B/K and Py, P in B(K) with P, — Py of order
3. Assume ¢(Py) # Px.

x a degree 2 function with a zero at Py and a pole at P..

z with divisor 3(Py — Px).

Image of x x z: B — P' x P! has equation

N aXix3ZlzZi =o.
0<i<3
0gj<2

Z is oo at a single point, and x has a pole at this point. So if we
set Zy = 0 we find a multiple of Z2X3. We deduce that

Ao =app=ajp2=0,a,7#0.

Similarly
a0 =aio=4apo=0,a30#0.
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Genus 2 curve with 3-torsion

Plane affine model

(8370 + 3371Z)X3 + (8171 + 3271X)ZX + (8071 + 80722)2 =0.

Degree 3 equation in x with twisted discriminant
Z%(as + a3 1z)~* times

h(z) = ('&)30,25-13,1)224 + (125-10,23:25,1 + 16248, 033,233,1 — 54ay 1ap 1409 2831 + 16230Y1a§’1aoyz)23
2 2 3 2 2
+ (8133’0302 + 12301132’1 — 5431,1327130,133,1 +32483,080,180,283,1 — :3‘9171.':12’1
—54a3 pay 182,180,2 + 81{:1(2)11.3571 + 12‘:43’1{:11311 )22

3 2 2 2
+  (12ay ja3,0 — 54a30a1,182,180,1 + 16245 gap, 180,2 + 16243 04) 1d3,1)Z + (9a3,080,1)"-

We can parameterize B with cubic radicals. We first
parameterize the elliptic curve with equation 2 = h(z). We
deduce a parameterization of B applying Tartaglia-Cardan
formulae to the cubic equation.
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Genus 2 curve with 3-torsion

Degree 2in z
2 3 2 3 _
dp 22" + (33,1X + a1X“+ai1 X+ ap 1 )Z + azox” = 0.
Discriminant
_ 3 2 2 3
A(X) = (83,1X + a1 X" +aj 1 x+ 30,1) — 480728370X .

A Weierstrass model for B is then u? = A(x).

Conversely, from u? = mg(x), write m(x) as a difference
ms(x)? — mo(x)3. Send the roots of m, to 0 and oo.

Succeeds for every genus two curve having a rational 3-torsion
point in its jacobian that splits e.g. can be represented as a
difference between two rational points on B.
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K the field with 83 elements. B curve y? = f(x) with
f(x) = x® +39x° + 64x* + 7x + x® + 19x + 36.
Write f(x) = b? — a° with b(x) = 68x3 4 53x2 + 37x + 76 and

a(x) = 53x? + 29x + 54 = 53(x — 10)(x — 38).
Change of variable x <— (10x +38)/(x + 1) turns f into

(42x3 + 43x? 4 45x + 25)% — 77x3.

az1 =42,a1 =43,a11 =45,a,1 = 25,802 =40,a30 = 1.
The resolvent is elliptic curve

t2 = h(z) = 30z* 4+ 502% + 447% + 46z + 78.
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Curves with a us % pp action

C a genus two curve with P,, — Py of order 5 in Jg.

A — C associated unramified us-cover.
The involution ¢ lifts to A. Set B= A/o. Then gg = 2.
The corresponding moduli space is rational.

BVA\MiC
N,
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Composing parameterizations

/\/

\
/\/ /

Co = Bq
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Other families of covers

o 13 X o with (fs, I’t) = (6, 1)
B and C have genus 2. The map B — E is any degree 3
map with a triple pole. One for every non-Weierstrass point
P on B. Family of parameterizations of B by genus two
curves Cp, non-isotrivial. However, Jc,[3] ~ Jg[3].

Q 13 x pp with (rs, 1) = (8, 1)
B and C have genus 3. The map B — E has degree 3 and
a triple pole P, a Weierstrass point. C is hyperelliptic.
Every genus 3 curve B with a Weierstrass point is
parameterized by a genus 3 hyperelliptic curve.
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