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Parameterizations by radicals

Find P ∈ C with
xP , yP ∈ k(t , 3

√
R(t)).

Examples by Icart, Kammerer, Lercier, Renault, Farashahi.
Encoding into and elliptic curve C over K where #K = 2 mod 3.
Contents

1 Radical morphisms,
2 Torsors,
3 A general recipe,
4 Genus one curves,
5 Genus two curves,
6 Variations,
7 Genus curves with 5-torsion and beyond.
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Radicals

Lemma

K a field, d ≥ 1, and a ∈ K ∗. The polynomial xd − a is
irreducible iff

For every prime l dividing d, a is not the l-th power in K ∗,
If 4 divides d, then −4a is not a 4-th power in K ∗.

For S ⊂ P a field extension L/K is said S-radical if

L ' K [x ]/(xd − a)

for d ∈ S and a ∈ K ∗ not a d-th power.
L/K is S-multiradical if

K = K0 ⊂ K1 ⊂ · · · ⊂ Kn = L

with each Ki+1/Ki an S-radical extension.
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Radical morphisms

f : C → D an epimorphism of (projective, smooth, absolutely
integral) curves over K is said to be a radical morphism if
K (D) ⊂ K (C) is radical.
Define similarly multiradical morphisms, S-radical morphisms,
S-multiradical morphisms.
An S-parameterization is

D
π

��
ρ
��

C P1

with ρ an S-multiradical map and π an epimorphism.
In this situation one says that C/K is parameterizable by
S-radicals.
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Torsors

Let Γ = Gal(K̄/K ) and A a finite set acted on by Γ. Then A is a
finite Γ-set. Define

Alg(A) = HomΓ(A, K̄ ).

A finite Γ-group is a finite Γ-set G with a group structure
compatible with the Γ-action.
If A is a Γ-set acted on simply transitively by a finite Γ-group G,
and if the action of G on A is compatible with the actions of Γ on
G and A, then A is a G-torsor.
Torsors are classified by H1(Γ,G).
A finite Γ-group G is said to be S-resoluble if there exists

1 = G0 ⊂ G1 ⊂ · · · ⊂ Gi ⊂ · · · ⊂ GI = G

with Gi+1/Gi ' µpi for some pi ∈ S.

Jean-Marc Couveignes (with Reynald Lercier) The geometry of some parameterizations and encodings



Radical maps

K a finite field with characteristic p and cardinality q. S a set of
prime integers. Assume p 6∈ S and S ∩ Supp(q − 1) = ∅.
f : C → D a radical morphism of degree d ∈ S. X ⊂ C the
ramification locus let Y = f (X ) ⊂ D the branch locus. Induced
map on K -points F : C(K )→ D(K ) is a bijection.

Proof : A branched point Q in D(K ) is totally ramified, so has a
unique preimage P in C(K ). For a non-branched point
Q ∈ D(K )− Y (K ) the fiber f (−1)(Q) is a µd -torsor. Since
H1(K , µd ) = K ∗/(K ∗)d = 0 this torsor is µd . Since
H0(K , µd ) = µd (K ) = {1} there is a unique K -rational point in
f (−1)(Q). �

The reciprocal map F (−1) : D(K )→ C(K ) can be evaluated in
deterministic polynomial time.
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Encodings

K a finite field with characteristic p and cardinality q. S a set of
prime integers. Assume p 6∈ S and S ∩ Supp(q − 1) = ∅. An
S-parameterization

D
π

��
ρ
��

C P1

induces R : D(K )→ P1(K ) and Π : D(K )→ C(K ).
The composition Π ◦ R(−1) is called an encoding.
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Tartaglia-Cardan formulae

K a field with characteristic prime to 6, Γ = Gal(K̄/K ).
Sym(µ3) is a acted on by Γ. And µ3 ⊂ Sym(µ3) is normal.
Stab(1) ' µ2. So Sym(µ3) ' µ3 o µ2.
Let ζ3 ∈ K̄ a primitive third root of unity and set

√
−3 = 2ζ3 + 1.

Take h(x) = x3 − s1x2 + s2x − s3 separable. Set

R = Roots(h) ⊂ K̄

and
A = Bij(Roots(h), µ3).

For γ ∈ Γ and f ∈ A set γ f = γ ◦ f ◦ γ−1.
Action of Sym(µ3) on the left.
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Tartaglia-Cardan formulae

A = Bij(Roots(h), µ3) a Sym(µ3)-torsor. The quotient C = A/µ3
is a µ2-torsor. The quotient B = A/µ2 is a Γ-set.

A

µ2

~~

µ3

  
B

  

C

~~
{1}

Alg(A)

µ2

vv

µ3

((
Alg(B) = K [x ]/h(x)

((

Alg(C) = K [x ]/x2 + 3∆

uuK
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Tartaglia-Cardan formulae

A = Bij(Roots(h), µ3) a Sym(µ3)-torsor. The quotient C = A/µ3
is a µ2-torsor. The quotient B = A/µ2 is a Γ-set.
A function ξ in Alg(B) ⊂ Alg(A) is

ξ : B // K̄

f � // f (−1)(1).

The algebra Alg(B) is generated by ξ, and the characteristic
polynomial of ξ is h(x). So

Alg(B) ' K [x ]/h(x).
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Tartaglia-Cardan formulae

Tartaglia-Cardan formulae construct functions in Alg(A).
These functions can be constructed with radicals because
Sym(µ3) = µ3 o µ2 is resoluble.
Define first δ ∈ Alg(C) ⊂ Alg(A) by

δ : A // K̄

f
� // √−3(f (−1)(ζ)−f (−1)(1))(f (−1)(ζ2)−f (−1)(ζ))(f (−1)(1)−f (−1)(ζ2)).

Note
√
−3 balances the Galois action on µ3. The algebra

Alg(C) is generated by δ and

δ2 = 81s2
3 − 54s3s1s2 − 3s2

1s2
2 + 12s3

1s3 + 12s3
2 = −3∆

is the twisted discriminant.
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Tartaglia-Cardan’s formulae

Define ρ ∈ Alg(A) as

ρ : A // K̄

f //
∑

r∈R r × f (r) =
∑

ζ∈µ3
ζ × f (−1)(ζ).

ρ3 is invariant by µ3 ⊂ Sym(µ3) so ρ3 ∈ Alg(C). Indeed

ρ3 = s3
1 +

27
2

s3 −
9
2

s1s2 −
3
2
δ.

A variant of ρ is

ρ′ : A // K̄

f //
∑

r∈R r−1 × f (r).
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Tartaglia-Cardan’s formulae

ρ3 = s3
1 +

27
2

s3 −
9
2

s1s2 −
3
2
δ.

and

ρ′3 = s3
1 +

27
2

s3 −
9
2

s1s2 +
3
2
δ.

Further
ρρ′ = s2

1 − 3s2.

The root ξ of h(x) can be expressed in terms of ρ and ρ′ as

ξ =
s1 + ρ+ ρ′

3
.
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Tartaglia-Cardan’s formulae

Alg(A) is not the Galois closure of K [x ]/h(x).

Galois closure associated with the Sym({1,2,3})-torsor
Bij(R, {1,2,3}). Not resoluble.

However Alg(A) ⊃ Alg(B) ' K [x ]/h(x) because the quotient of
Bij(Roots(h), µ3) by Stab(1) ⊂ Sym(µ3) is isomorphic to the
quotient of Bij(R, {1,2,3}) by Stab(1) ∈ Sym({1,2,3}).

Note that the quotient of Bij(R, {1,2,3}) by
(123) ∈ Sym({1,2,3}) is associated with K [x ]/(x2 −∆) while
the quotient of Bij(R, µ3) by (1ζζ2) ∈ Sym(µ3) is associated
with K [x ]/(x2 + 3∆).
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Curves with a µ3 o µ2 action

D′

��

µ3

  
A

µ2

��

µ3

��

D
π

~~
ρ
��

B C P1

Set S′ = S ∪ {3} and ρ′ : D′
µ3−→ D

ρ−→ P1, and π′ the
composite map

π′ : D′ −→ A
µ2−→ B.

Then (D′, ρ′, π′) is an S′-parameterization of B. Say that C is
the resolvent of B.
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Curves with a µ3 o µ2 action

D′

��

µ3

  
A

µ2

��

µ3

��

D
π

~~
ρ
��

B C P1

D′ isabsolutely integral:
1 When C = P1 and π and ρ are trivial.
2 When the µ3-quotient A→ C is branched at some P of C,

and π is not. When C has genus 1 we may compose π with
a translation to ensure that it is not branched at P.

3 When the degree of π is prime to 3. The resulting
parameterization π′ has degree prime to 3 also. We can
iterate in that case.
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Selecting curves

Find curve A with a µ3 o µ2 action. Set E = A/(µ3 o µ2).

A
µ2

��

µ3

��
B

��

C

��
E

We know how to parameterize C. We want to parameterize B.
Take E = P1 (more generic).
r the number of branched points of B → E , rs the number of
simple branched points, rt the number of fully branched points.
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Selecting curves

gB =
rs

2
+ rt − 2, and gA =

3rs

2
+ 2rt − 5, and gC =

rs

2
− 1.

Call
m = r − 3 = rs + rt − 3

and call it the modular dimension. Genericity condition

rs + 4rt ≤ 12− 2ε(
rs

2
+ rt − 2),

where ε(0) = 3, ε(1) = 1, and ε(n) = 0 for n ≥ 2.
1 Set gC = 0. So rs = 2, gB = rt − 1 and the genericity

condition reads rt ≤ 2. Only rt = 2 is of interest. Farashahi
and Kammerer, Lercier, Renault.

2 Set gC = 1. So rs = 4 and gB = rt . The genericity
assumption reads rt ≤ 2. The case rt = 2 provides
encodings for genus 2 curves.
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rs = rt = 2

A
µ2

��

µ3

��
B

��

C

��
E

gC = 0, gB = 1, gA = 2, and B → P1 has degree 3 with two fully
branched points and two simply branched points.
Call P0 and P∞ the two fully ramified points. Assume
P0,P∞ ∈ B(K ). The difference P0 − P∞ is in JB[3].

Jean-Marc Couveignes (with Reynald Lercier) The geometry of some parameterizations and encodings



Genus 1 curve with 3-torsion

Genus 1 curve B/K and two points P0, P∞ in B(K ) s. t.
P∞ − P0 has order 3. z ∈ K (B) with divisor 3(P0 − P∞).
σ : B → B involution sending P0 onto P∞.
There exists a0,0 ∈ K ∗ s. t. σ(z)× z = a0,0.
x a degree 2 function, invariant by σ, with (x)∞ = P0 + P∞.
The sum z + σ(z) belongs to K (x). As a function on P1 it has a
single pole of multiplicity 3 at x =∞.

z +
a0,0

z
= x3 + a1,1x + a0,1.

The image of x × z : B → P1 × P1 has equation

Z0Z1

(
X 3

1 + a1,1X1X 2
0 + a0,1X 3

0

)
= X 3

0

(
Z 2

1 + a0,0Z 2
0

)
.
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Genus 1 curve with 3-torsion

Z0Z1

(
X 3

1 + a1,1X1X 2
0 + a0,1X 3

0

)
= X 3

0

(
Z 2

1 + a0,0Z 2
0

)
.

B? ⊂ P1 × P1 with arithmetic genus 2. Call S = (j , k) the
singular point. We find

a0,0 = k2, a1,1 = −3j2, a0,1 = 2k + 2j3.

z2 + k2 = z
(

x3 − 3j2x + 2(k + j3)
)
. (1)

This is a degree 3 equation in x with twisted discriminant
81(1− k/z)2 times

h(z) = z2 − (2k + 4j3)z + k2.

The resolvent C has equation t2 = h(z) and genus 0. We can
parameterize B with cubic radicals.
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rs = 4 and rt = 2

A
µ2

��

µ3

��
B

��

C

��
E

gC = 1, gB = 2, gA = 5, and B → P1 has degree 3 with two fully
branched points and four simply branched points.
Call P0 and P∞ the two fully ramified points. Assume
P0,P∞ ∈ B(K ). The difference P0 − P∞ is in JB[3].
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Genus 2 curve with 3-torsion

Genus 2 curve B/K and P0, P∞ in B(K ) with P∞ − P0 of order
3. Assume σ(P0) 6= P∞.
x a degree 2 function with a zero at P0 and a pole at P∞.
z with divisor 3(P0 − P∞).
Image of x × z : B → P1 × P1 has equation∑

06i63
06j62

ai,jX i
1X 3−i

0 Z j
1Z 2−j

0 = 0.

z is∞ at a single point, and x has a pole at this point. So if we
set Z0 = 0 we find a multiple of Z 2

1 X 3
0 . We deduce that

a3,2 = a2,2 = a1,2 = 0,a0,2 6= 0.

Similarly
a2,0 = a1,0 = a0,0 = 0,a3,0 6= 0.
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Genus 2 curve with 3-torsion

Plane affine model

(a3,0 + a3,1z)x3 + (a1,1 + a2,1x)zx + (a0,1 + a0,2z)z = 0.

Degree 3 equation in x with twisted discriminant
z2(a3,0 + a3,1z)−4 times

h(z) = (9a0,2a3,1)2z4 + (12a0,2a3
2,1 + 162a3, 0a2

0,2a3,1 − 54a1,1a2,1a0,2a3,1 + 162a0,1a2
3,1a0,2)z3

+ (81a2
3,0a2

0,2 + 12a0,1a3
2,1 − 54a1,1a2,1a0,1a3,1 + 324a3,0a0,1a0,2a3,1 − 3a2

1,1a2
2,1

−54a3,0a1,1a2,1a0,2 + 81a2
0,1a2

3,1 + 12a3,1a3
1,1)z2

+ (12a3
1,1a3,0 − 54a3,0a1,1a2,1a0,1 + 162a2

3,0a0,1a0,2 + 162a3,0a2
0,1a3,1)z + (9a3,0a0,1)2

.

We can parameterize B with cubic radicals. We first
parameterize the elliptic curve with equation t2 = h(z). We
deduce a parameterization of B applying Tartaglia-Cardan
formulae to the cubic equation.
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Genus 2 curve with 3-torsion

Degree 2 in z

a0,2z2 + (a3,1x3 + a2,1x2 + a1,1x + a0,1)z + a3,0x3 = 0.

Discriminant

∆(x) = (a3,1x3 + a2,1x2 + a1,1x + a0,1)2 − 4a0,2a3,0x3.

A Weierstrass model for B is then u2 = ∆(x).
Conversely, from u2 = m6(x), write m(x) as a difference
m3(x)2 −m2(x)3. Send the roots of m2 to 0 and∞.
Succeeds for every genus two curve having a rational 3-torsion
point in its jacobian that splits e.g. can be represented as a
difference between two rational points on B.
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Example

K the field with 83 elements. B curve y2 = f (x) with

f (x) = x6 + 39x5 + 64x4 + 7x3 + x2 + 19x + 36.

Write f (x) = b2 − a3 with b(x) = 68x3 + 53x2 + 37x + 76 and
a(x) = 53x2 + 29x + 54 = 53(x − 10)(x − 38).
Change of variable x ← (10x + 38)/(x + 1) turns f into

(42x3 + 43x2 + 45x + 25)2 − 77x3.

a3,1 = 42,a2,1 = 43,a1,1 = 45,a0,1 = 25,a0,2 = 40,a3,0 = 1.

The resolvent is elliptic curve

t2 = h(z) = 30z4 + 50z3 + 44z2 + 46z + 78.
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Curves with a µ5 o µ2 action

C a genus two curve with P∞ − P0 of order 5 in JC .
A→ C associated unramified µ5-cover.
The involution σ lifts to A. Set B = A/σ. Then gB = 2.
The corresponding moduli space is rational.

A
µ2

~~

µ5

  
B

��

C

��
P1
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Composing parameterizations

D2

xx

µ5

$$
D1

zz

µ3

$$
A2

µ2

{{

µ5

&&

A1
µ2

xx

µ3

##

D
π

{{
ρ
��

B2 C2 = B1 C1 P1
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Other families of covers

1 µ3 o µ2 with (rs, rt ) = (6,1)
B and C have genus 2. The map B → E is any degree 3
map with a triple pole. One for every non-Weierstrass point
P on B. Family of parameterizations of B by genus two
curves CP , non-isotrivial. However, JCP [3] ' JB[3].

2 µ3 o µ2 with (rs, rt ) = (8,1)
B and C have genus 3. The map B → E has degree 3 and
a triple pole P, a Weierstrass point. C is hyperelliptic.
Every genus 3 curve B with a Weierstrass point is
parameterized by a genus 3 hyperelliptic curve.
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