The geometry of some parameterizations and encodings

Jean-Marc Couveignes (with Reynald Lercier)

INRIA Bordeaux Sud-Ouest et Institut de Mathématiques de Bordeaux

CIAO 2020, Bordeaux

Find $P \in C$ with

 $x_P, y_P \in k(t, \sqrt[3]{R(t)}).$

Examples by Icart, Kammerer, Lercier, Renault, Farashahi. Encoding into and elliptic curve *C* over *K* where $\#K = 2 \mod 3$. Contents

- Radical morphisms,
- 2 Torsors,
- A general recipe,
- Genus one curves,
- Genus two curves,
- Variations,
- Genus curves with 5-torsion and beyond.

Lemma

K a field, $d \ge 1$, and $a \in K^*$. The polynomial $x^d - a$ is irreducible iff

- For every prime I dividing d, a is not the I-th power in K*,
- If 4 divides d, then -4a is not a 4-th power in K*.

For $S \subset \mathbb{P}$ a field extension L/K is said *S*-*radical* if

$$L\simeq K[x]/(x^d-a)$$

for $d \in S$ and $a \in K^*$ not a *d*-th power. L/K is *S*-multiradical if

$$K = K_0 \subset K_1 \subset \cdots \subset K_n = L$$

with each K_{i+1}/K_i an *S*-radical extension.

 $f: C \to D$ an epimorphism of (projective, smooth, absolutely integral) curves over *K* is said to be a *radical morphism* if $K(D) \subset K(C)$ is radical. Define similarly multiradical morphisms, *S*-radical morphisms, *S*-multiradical morphisms. An *S*-parameterization is

 $\begin{array}{c}
D \\
\pi \\
\rho \\
P^{1}
\end{array}$

with ρ an *S*-multiradical map and π an epimorphism. In this situation one says that C/K is *parameterizable* by *S*-radicals. Let $\Gamma = \text{Gal}(\overline{K}/K)$ and *A* a finite set acted on by Γ . Then *A* is a finite Γ -set. Define

 $\operatorname{Alg}(A) = \operatorname{Hom}_{\Gamma}(A, \overline{K}).$

A finite Γ -group is a finite Γ -set *G* with a group structure compatible with the Γ -action.

If A is a Γ -set acted on simply transitively by a finite Γ -group G, and if the action of G on A is compatible with the actions of Γ on G and A, then A is a G-torsor.

Torsors are classified by $H^1(\Gamma, G)$.

A finite Γ -group *G* is said to be *S*-*resoluble* if there exists

$$1 = G_0 \subset G_1 \subset \cdots \subset G_i \subset \cdots \subset G_l = G$$

with $G_{i+1}/G_i \simeq \mu_{p_i}$ for some $p_i \in S$.

Radical maps

K a finite field with characteristic *p* and cardinality *q*. *S* a set of prime integers. Assume $p \notin S$ and $S \cap \text{Supp}(q-1) = \emptyset$. $f : C \to D$ a radical morphism of degree $d \in S$. $X \subset C$ the ramification locus let $Y = f(X) \subset D$ the branch locus. Induced map on *K*-points $F : C(K) \to D(K)$ is a bijection.

Proof : A branched point *Q* in *D*(*K*) is totally ramified, so has a unique preimage *P* in *C*(*K*). For a non-branched point $Q \in D(K) - Y(K)$ the fiber $f^{(-1)}(Q)$ is a μ_d -torsor. Since $H^1(K, \mu_d) = K^*/(K^*)^d = 0$ this torsor is μ_d . Since $H^0(K, \mu_d) = \mu_d(K) = \{1\}$ there is a unique *K*-rational point in $f^{(-1)}(Q)$.

The reciprocal map $F^{(-1)}: D(K) \to C(K)$ can be evaluated in deterministic polynomial time.

K a finite field with characteristic *p* and cardinality *q*. *S* a set of prime integers. Assume $p \notin S$ and $S \cap \text{Supp}(q-1) = \emptyset$. An *S*-parameterization

induces $\mathbf{R} : D(K) \to \mathbb{P}^1(K)$ and $\Pi : D(K) \to C(K)$. The composition $\Pi \circ \mathbf{R}^{(-1)}$ is called an *encoding*. *K* a field with characteristic prime to 6, Γ = Gal(\bar{K}/K). Sym(μ_3) is a acted on by Γ. And $\mu_3 \subset$ Sym(μ_3) is normal. Stab(1) $\simeq \mu_2$. So Sym(μ_3) $\simeq \mu_3 \rtimes \mu_2$. Let $\zeta_3 \in \bar{K}$ a primitive third root of unity and set $\sqrt{-3} = 2\zeta_3 + 1$. Take $h(x) = x^3 - s_1 x^2 + s_2 x - s_3$ separable. Set

 $R = \operatorname{Roots}(h) \subset \overline{K}$

and

 $A = Bij(Roots(h), \mu_3).$

For $\gamma \in \Gamma$ and $f \in A$ set $\gamma f = \gamma \circ f \circ \gamma^{-1}$. Action of Sym(μ_3) on the left.

Tartaglia-Cardan formulae

 $A = \text{Bij}(\text{Roots}(h), \mu_3)$ a Sym(μ_3)-torsor. The quotient $C = A/\mu_3$ is a μ_2 -torsor. The quotient $B = A/\mu_2$ is a Γ-set.

Jean-Marc Couveignes (with Reynald Lercier) The geometry of some parameterizations and encodings

 $A = \text{Bij}(\text{Roots}(h), \mu_3)$ a Sym(μ_3)-torsor. The quotient $C = A/\mu_3$ is a μ_2 -torsor. The quotient $B = A/\mu_2$ is a Γ-set. A function ξ in Alg(B) ⊂ Alg(A) is

$$\xi: B \longrightarrow \overline{K}$$

The algebra Alg(B) is generated by ξ , and the characteristic polynomial of ξ is h(x). So

 $\operatorname{Alg}(B) \simeq K[x]/h(x).$

 $f \longmapsto f^{(-1)}(1).$

Tartaglia-Cardan formulae

Tartaglia-Cardan formulae construct functions in Alg(*A*). These functions can be constructed with radicals because $Sym(\mu_3) = \mu_3 \rtimes \mu_2$ is resoluble. Define first $\delta \in Alg(C) \subset Alg(A)$ by

$$\delta: \qquad A \longrightarrow \bar{K}$$

$$f \longmapsto \sqrt{-3} \Big(f^{(-1)}(\zeta) - f^{(-1)}(1) \Big) \Big(f^{(-1)}(\zeta^2) - f^{(-1)}(\zeta) \Big) \Big(f^{(-1)}(1) - f^{(-1)}(\zeta^2) \Big).$$

Note $\sqrt{-3}$ balances the Galois action on μ_3 . The algebra Alg(C) is generated by δ and

$$\delta^2 = 81s_3^2 - 54s_3s_1s_2 - 3s_1^2s_2^2 + 12s_1^3s_3 + 12s_2^3 = -3\Delta$$

is the twisted discriminant.

Tartaglia-Cardan's formulae

Define $\rho \in Alg(A)$ as

$$\rho: \qquad \mathsf{A} \longrightarrow \bar{\mathsf{K}}$$

$$f \longrightarrow \sum_{r \in R} r \times f(r) = \sum_{\zeta \in \mu_3} \zeta \times f^{(-1)}(\zeta).$$

 ρ^3 is invariant by $\mu_3 \subset \text{Sym}(\mu_3)$ so $\rho^3 \in \text{Alg}(\mathcal{C})$. Indeed

$$\rho^3 = s_1^3 + \frac{27}{2}s_3 - \frac{9}{2}s_1s_2 - \frac{3}{2}\delta.$$

A variant of ρ is

$$\rho': \qquad A \longrightarrow \bar{K}$$

$$f \longrightarrow \sum_{r \in R} r^{-1} \times f(r).$$

Tartaglia-Cardan's formulae

$$\rho^3 = s_1^3 + \frac{27}{2}s_3 - \frac{9}{2}s_1s_2 - \frac{3}{2}\delta.$$

and

$$\rho'^3 = s_1^3 + \frac{27}{2}s_3 - \frac{9}{2}s_1s_2 + \frac{3}{2}\delta.$$

Further

$$\rho\rho'=s_1^2-3s_2.$$

The root ξ of h(x) can be expressed in terms of ρ and ρ' as

$$\xi=\frac{s_1+\rho+\rho'}{3}.$$

Alg(A) is not the Galois closure of K[x]/h(x).

Galois closure associated with the Sym $(\{1, 2, 3\})$ -torsor Bij $(R, \{1, 2, 3\})$. Not resoluble.

However $Alg(A) \supset Alg(B) \simeq K[x]/h(x)$ because the quotient of $Bij(Roots(h), \mu_3)$ by $Stab(1) \subset Sym(\mu_3)$ is isomorphic to the quotient of $Bij(R, \{1, 2, 3\})$ by $Stab(1) \in Sym(\{1, 2, 3\})$.

Note that the quotient of Bij(R, {1,2,3}) by (123) \in Sym({1,2,3}) is associated with $K[x]/(x^2 - \Delta)$ while the quotient of Bij(R, μ_3) by ($1\zeta\zeta^2$) \in Sym(μ_3) is associated with $K[x]/(x^2 + 3\Delta)$.

Curves with a $\mu_3 \rtimes \mu_2$ action

Set $S' = S \cup \{3\}$ and $\rho' : D' \xrightarrow{\mu_3} D \xrightarrow{\rho} \mathbb{P}^1$, and π' the composite map

$$\pi': D' \longrightarrow A \stackrel{\mu_2}{\longrightarrow} B.$$

Then (D', ρ', π') is an *S'*-parameterization of *B*. Say that *C* is the *resolvent* of *B*.

Curves with a $\mu_3 \rtimes \mu_2$ action

D' is absolutely integral:

- When $C = \mathbb{P}^1$ and π and ρ are trivial.
- 2 When the μ_3 -quotient $A \to C$ is branched at some P of C, and π is not. When C has genus 1 we may compose π with a translation to ensure that it is not branched at P.
- Solution When the degree of π is prime to 3. The resulting parameterization π' has degree prime to 3 also. We can iterate in that case.

Find curve *A* with a $\mu_3 \rtimes \mu_2$ action. Set $E = A/(\mu_3 \rtimes \mu_2)$.

We know how to parameterize *C*. We want to parameterize *B*. Take $E = \mathbb{P}^1$ (more generic).

r the number of branched points of $B \rightarrow E$, r_s the number of simple branched points, r_t the number of fully branched points.

Selecting curves

$$g_B = rac{r_s}{2} + r_t - 2$$
, and $g_A = rac{3r_s}{2} + 2r_t - 5$, and $g_C = rac{r_s}{2} - 1$.
Call

$$m=r-3=r_s+r_t-3$$

and call it the modular dimension. Genericity condition

$$r_s+4r_t\leq 12-2\epsilon(\frac{r_s}{2}+r_t-2),$$

where $\epsilon(0) = 3$, $\epsilon(1) = 1$, and $\epsilon(n) = 0$ for $n \ge 2$.

- Set $g_C = 0$. So $r_s = 2$, $g_B = r_t 1$ and the genericity condition reads $r_t \le 2$. Only $r_t = 2$ is of interest. Farashahi and Kammerer, Lercier, Renault.
- 2 Set $g_c = 1$. So $r_s = 4$ and $g_B = r_t$. The genericity assumption reads $r_t \le 2$. The case $r_t = 2$ provides encodings for genus 2 curves.

 $g_C = 0, g_B = 1, g_A = 2$, and $B \to \mathbb{P}^1$ has degree 3 with two fully branched points and two simply branched points. Call P_0 and P_∞ the two fully ramified points. Assume $P_0, P_\infty \in B(K)$. The difference $P_0 - P_\infty$ is in $J_B[3]$. Genus 1 curve B/K and two points P_0 , P_∞ in B(K) s. t. $P_\infty - P_0$ has order 3. $z \in K(B)$ with divisor $3(P_0 - P_\infty)$. $\sigma : B \to B$ involution sending P_0 onto P_∞ . There exists $a_{0,0} \in K^*$ s. t. $\sigma(z) \times z = a_{0,0}$. *x* a degree 2 function, invariant by σ , with $(x)_\infty = P_0 + P_\infty$. The sum $z + \sigma(z)$ belongs to K(x). As a function on \mathbb{P}^1 it has a single pole of multiplicity 3 at $x = \infty$.

$$z + \frac{a_{0,0}}{z} = x^3 + a_{1,1}x + a_{0,1}.$$

The image of $x \times z : B \to \mathbb{P}^1 \times \mathbb{P}^1$ has equation

$$Z_0Z_1\left(X_1^3+a_{1,1}X_1X_0^2+a_{0,1}X_0^3\right)=X_0^3\left(Z_1^2+a_{0,0}Z_0^2\right).$$

Genus 1 curve with 3-torsion

$$Z_0Z_1\left(X_1^3+a_{1,1}X_1X_0^2+a_{0,1}X_0^3\right)=X_0^3\left(Z_1^2+a_{0,0}Z_0^2\right).$$

 $B^* \subset \mathbb{P}^1 \times \mathbb{P}^1$ with arithmetic genus 2. Call S = (j, k) the singular point. We find

$$a_{0,0} = k^2, \ a_{1,1} = -3j^2, \ a_{0,1} = 2k + 2j^3.$$

$$z^{2} + k^{2} = z \left(x^{3} - 3j^{2}x + 2(k+j^{3}) \right).$$
 (1)

This is a degree 3 equation in x with twisted discriminant $81(1 - k/z)^2$ times

$$h(z) = z^2 - (2k + 4j^3)z + k^2.$$

The resolvent *C* has equation $t^2 = h(z)$ and genus 0. We can parameterize *B* with cubic radicals.

$$r_s = 4$$
 and $r_t = 2$

 $g_C = 1, g_B = 2, g_A = 5$, and $B \to \mathbb{P}^1$ has degree 3 with two fully branched points and four simply branched points. Call P_0 and P_∞ the two fully ramified points. Assume $P_0, P_\infty \in B(K)$. The difference $P_0 - P_\infty$ is in $J_B[3]$.

Genus 2 curve with 3-torsion

Genus 2 curve B/K and P_0 , P_∞ in B(K) with $P_\infty - P_0$ of order 3. Assume $\sigma(P_0) \neq P_\infty$. *x* a degree 2 function with a zero at P_0 and a pole at P_∞ . *z* with divisor $3(P_0 - P_\infty)$. Image of $x \times z : B \to \mathbb{P}^1 \times \mathbb{P}^1$ has equation

$$\sum_{\substack{0 \leq i \leq 3 \\ 0 \leq j \leq 2}} a_{i,j} X_1^i X_0^{3-i} Z_1^j Z_0^{2-j} = 0.$$

z is ∞ at a single point, and *x* has a pole at this point. So if we set $Z_0 = 0$ we find a multiple of $Z_1^2 X_0^3$. We deduce that

$$a_{3,2} = a_{2,2} = a_{1,2} = 0, a_{0,2} \neq 0.$$

Similarly

$$a_{2,0} = a_{1,0} = a_{0,0} = 0, a_{3,0} \neq 0.$$

Genus 2 curve with 3-torsion

Plane affine model

$$(a_{3,0} + a_{3,1}z)x^3 + (a_{1,1} + a_{2,1}x)zx + (a_{0,1} + a_{0,2}z)z = 0.$$

Degree 3 equation in x with twisted discriminant $z^2(a_{3,0} + a_{3,1}z)^{-4}$ times

$$\begin{split} h(z) &= (9a_{0,2}a_{3,1})^2 z^4 + (12a_{0,2}a_{3,1}^2 + 162a_3, 0a_{0,2}^2a_{3,1} - 54a_{1,1}a_{2,1}a_{0,2}a_{3,1} + 162a_{0,1}a_{3,1}^2a_{3,1}a_{0,2})z^3 \\ &+ (81a_{3,0}^2a_{0,2}^2 + 12a_{0,1}a_{2,1}^2 - 54a_{1,1}a_{2,1}a_{0,1}a_{3,1} + 324a_{3,0}a_{0,1}a_{0,2}a_{3,1} - 3a_{1,1}^2a_{2,1}^2 \\ &- 54a_{3,0}a_{1,1}a_{2,1}a_{0,2} + 81a_{0,1}^2a_{3,1}^2 + 12a_{3,1}a_{1,1}^3)z^2 \\ &+ (12a_{1,1}^3a_{3,0} - 54a_{3,0}a_{1,1}a_{2,1}a_{0,1} + 162a_{3,0}^2a_{0,1}a_{0,2} + 162a_{3,0}a_{0,1}^2a_{0,1})z + (9a_{3,0}a_{0,1})^2. \end{split}$$

We can parameterize *B* with cubic radicals. We first parameterize the elliptic curve with equation $t^2 = h(z)$. We deduce a parameterization of *B* applying Tartaglia-Cardan formulae to the cubic equation.

Degree 2 in z

$$a_{0,2}z^2 + (a_{3,1}x^3 + a_{2,1}x^2 + a_{1,1}x + a_{0,1})z + a_{3,0}x^3 = 0.$$

Discriminant

$$\Delta(x) = (a_{3,1}x^3 + a_{2,1}x^2 + a_{1,1}x + a_{0,1})^2 - 4a_{0,2}a_{3,0}x^3.$$

A Weierstrass model for *B* is then $u^2 = \Delta(x)$. Conversely, from $u^2 = m_6(x)$, write m(x) as a difference $m_3(x)^2 - m_2(x)^3$. Send the roots of m_2 to 0 and ∞ . Succeeds for every genus two curve having a rational 3-torsion point in its jacobian that splits e.g. can be represented as a difference between two rational points on *B*.

Example

K the field with 83 elements. *B* curve $y^2 = f(x)$ with

$$f(x) = x^6 + 39x^5 + 64x^4 + 7x^3 + x^2 + 19x + 36.$$

Write $f(x) = b^2 - a^3$ with $b(x) = 68x^3 + 53x^2 + 37x + 76$ and $a(x) = 53x^2 + 29x + 54 = 53(x - 10)(x - 38)$. Change of variable $x \leftarrow (10x + 38)/(x + 1)$ turns *f* into

$$(42x^3 + 43x^2 + 45x + 25)^2 - 77x^3$$

$$a_{3,1} = 42, a_{2,1} = 43, a_{1,1} = 45, a_{0,1} = 25, a_{0,2} = 40, a_{3,0} = 1.$$

The resolvent is elliptic curve

$$t^2 = h(z) = 30z^4 + 50z^3 + 44z^2 + 46z + 78.$$

C a genus two curve with $P_{\infty} - P_0$ of order 5 in J_C . $A \rightarrow C$ associated unramified μ_5 -cover. The involution σ lifts to *A*. Set $B = A/\sigma$. Then $g_B = 2$. The corresponding moduli space is rational.

Composing parameterizations

Other families of covers

- µ₃ ⋊ µ₂ with (r_s, r_t) = (6, 1)
 B and C have genus 2. The map B → E is any degree 3 map with a triple pole. One for every non-Weierstrass point P on B. Family of parameterizations of B by genus two curves C_P, non-isotrivial. However, J_{C_P}[3] ≃ J_B[3].
- 2 $\mu_3 \rtimes \mu_2$ with $(r_s, r_t) = (8, 1)$ *B* and *C* have genus 3. The map $B \to E$ has degree 3 and a triple pole *P*, a Weierstrass point. *C* is hyperelliptic. Every genus 3 curve *B* with a Weierstrass point is parameterized by a genus 3 hyperelliptic curve.