The geometry of some parameterizations and encodings

Jean-Marc Couveignes (with Reynald Lercier)

INRIA Bordeaux Sud-Ouest et Institut de Mathématiques de Bordeaux

CIAO 2020, Bordeaux

Parameterizations by radicals

Find $P \in C$ with

$$
x_{P}, y_{P} \in k(t, \sqrt[3]{R(t)})
$$

Examples by Icart, Kammerer, Lercier, Renault, Farashahi. Encoding into and elliptic curve C over K where $\# K=2 \bmod 3$. Contents
(1) Radical morphisms,
(2) Torsors,
(3) A general recipe,
(4) Genus one curves,
(5) Genus two curves,
(6) Variations,
(?) Genus curves with 5 -torsion and beyond.

Lemma

K a field, $d \geq 1$, and $a \in K^{*}$. The polynomial $x^{d}-a$ is irreducible iff

- For every prime I dividing d, a is not the I-th power in K^{*},
- If 4 divides d, then $-4 a$ is not a 4-th power in K^{*}.

For $S \subset \mathbb{P}$ a field extension L / K is said S-radical if

$$
L \simeq K[x] /\left(x^{d}-a\right)
$$

for $d \in S$ and $a \in K^{*}$ not a d-th power.
L / K is S-multiradical if

$$
K=K_{0} \subset K_{1} \subset \cdots \subset K_{n}=L
$$

with each K_{i+1} / K_{i} an S-radical extension.
$f: C \rightarrow D$ an epimorphism of (projective, smooth, absolutely integral) curves over K is said to be a radical morphism if $K(D) \subset K(C)$ is radical.
Define similarly multiradical morphisms, S-radical morphisms, S-multiradical morphisms.
An S-parameterization is

with ρ an S-multiradical map and π an epimorphism. In this situation one says that C / K is parameterizable by S-radicals.

Torsors

Let $\Gamma=\operatorname{Gal}(\bar{K} / K)$ and A a finite set acted on by Γ. Then A is a finite Γ-set. Define

$$
\operatorname{Alg}(A)=\operatorname{Hom}_{\Gamma}(A, \bar{K})
$$

A finite Γ-group is a finite Γ-set G with a group structure compatible with the Γ-action.
If A is a Γ-set acted on simply transitively by a finite Γ-group G, and if the action of G on A is compatible with the actions of Γ on G and A, then A is a G-torsor.
Torsors are classified by $H^{1}(\Gamma, G)$.
A finite Γ-group G is said to be S-resoluble if there exists

$$
1=G_{0} \subset G_{1} \subset \cdots \subset G_{i} \subset \cdots \subset G_{l}=G
$$

with $G_{i+1} / G_{i} \simeq \mu_{p_{i}}$ for some $p_{i} \in S$.

Radical maps

K a finite field with characteristic p and cardinality q. S a set of prime integers. Assume $p \notin S$ and $S \cap \operatorname{Supp}(q-1)=\emptyset$.
$f: C \rightarrow D$ a radical morphism of degree $d \in S . X \subset C$ the ramification locus let $Y=f(X) \subset D$ the branch locus. Induced map on K-points $F: C(K) \rightarrow D(K)$ is a bijection.

Proof : A branched point Q in $D(K)$ is totally ramified, so has a unique preimage P in $C(K)$. For a non-branched point $Q \in D(K)-Y(K)$ the fiber $f^{(-1)}(Q)$ is a μ_{d}-torsor. Since $H^{1}\left(K, \mu_{d}\right)=K^{*} /\left(K^{*}\right)^{d}=0$ this torsor is μ_{d}. Since $H^{0}\left(K, \mu_{d}\right)=\mu_{d}(K)=\{1\}$ there is a unique K-rational point in $f^{(-1)}(Q)$.

The reciprocal map $F^{(-1)}: D(K) \rightarrow C(K)$ can be evaluated in deterministic polynomial time.

Encodings

K a finite field with characteristic p and cardinality q. S a set of prime integers. Assume $p \notin S$ and $S \cap \operatorname{Supp}(q-1)=\emptyset$. An S-parameterization

induces $R: D(K) \rightarrow \mathbb{P}^{1}(K)$ and $\Pi: D(K) \rightarrow C(K)$.
The composition $\Pi \circ R^{(-1)}$ is called an encoding.

Tartaglia-Cardan formulae

K a field with characteristic prime to $6, \Gamma=\operatorname{Gal}(\bar{K} / K)$.
$\operatorname{Sym}\left(\mu_{3}\right)$ is a acted on by Γ. And $\mu_{3} \subset \operatorname{Sym}\left(\mu_{3}\right)$ is normal.
$\operatorname{Stab}(1) \simeq \mu_{2}$. So $\operatorname{Sym}\left(\mu_{3}\right) \simeq \mu_{3} \rtimes \mu_{2}$.
Let $\zeta_{3} \in \bar{K}$ a primitive third root of unity and set $\sqrt{-3}=2 \zeta_{3}+1$.
Take $h(x)=x^{3}-s_{1} x^{2}+s_{2} x-s_{3}$ separable. Set

$$
R=\operatorname{Roots}(h) \subset \bar{K}
$$

and

$$
A=\operatorname{Bij}\left(\operatorname{Roots}(h), \mu_{3}\right) .
$$

For $\gamma \in \Gamma$ and $f \in A$ set $^{\gamma} f=\gamma \circ f \circ \gamma^{-1}$.
Action of $\operatorname{Sym}\left(\mu_{3}\right)$ on the left.

Tartaglia-Cardan formulae

$A=\operatorname{Bij}\left(\operatorname{Roots}(h), \mu_{3}\right) \operatorname{a} \operatorname{Sym}\left(\mu_{3}\right)$-torsor. The quotient $C=A / \mu_{3}$ is a μ_{2}-torsor. The quotient $B=A / \mu_{2}$ is a Γ-set.

Tartaglia-Cardan formulae

$A=\operatorname{Bij}\left(\operatorname{Roots}(h), \mu_{3}\right) \operatorname{a} \operatorname{Sym}\left(\mu_{3}\right)$-torsor. The quotient $C=A / \mu_{3}$ is a μ_{2}-torsor. The quotient $B=A / \mu_{2}$ is a Γ-set.
A function ξ in $\operatorname{Alg}(B) \subset \operatorname{Alg}(A)$ is

$$
\begin{aligned}
\xi: & B \longrightarrow \bar{K} \\
& f \longmapsto f^{(-1)}(1) .
\end{aligned}
$$

The algebra $\operatorname{Alg}(B)$ is generated by ξ, and the characteristic polynomial of ξ is $h(x)$. So

$$
\operatorname{Alg}(B) \simeq K[x] / h(x)
$$

Tartaglia-Cardan formulae

Tartaglia-Cardan formulae construct functions in $\operatorname{Alg}(A)$. These functions can be constructed with radicals because $\operatorname{Sym}\left(\mu_{3}\right)=\mu_{3} \rtimes \mu_{2}$ is resoluble.
Define first $\delta \in \operatorname{Alg}(C) \subset \operatorname{Alg}(A)$ by
$\delta:$

$$
f \longmapsto \sqrt{-3}\left(f^{(-1)}(\zeta)-f^{(-1)}(1)\right)\left(f^{(-1)}\left(\zeta^{2}\right)-f^{(-1)}(\zeta)\right)\left(f^{(-1)}(1)-f^{(-1)}\left(\zeta^{2}\right)\right)
$$

Note $\sqrt{-3}$ balances the Galois action on μ_{3}. The algebra $\operatorname{Alg}(C)$ is generated by δ and

$$
\delta^{2}=81 s_{3}^{2}-54 s_{3} s_{1} s_{2}-3 s_{1}^{2} s_{2}^{2}+12 s_{1}^{3} s_{3}+12 s_{2}^{3}=-3 \Delta
$$

is the twisted discriminant.

Tartaglia-Cardan's formulae

Define $\rho \in \operatorname{Alg}(A)$ as

$$
f \longrightarrow \sum_{r \in R} r \times f(r)=\sum_{\zeta \in \mu_{3}} \zeta \times f^{(-1)}(\zeta)
$$

ρ^{3} is invariant by $\mu_{3} \subset \operatorname{Sym}\left(\mu_{3}\right)$ so $\rho^{3} \in \operatorname{Alg}(C)$. Indeed

$$
\rho^{3}=s_{1}^{3}+\frac{27}{2} s_{3}-\frac{9}{2} s_{1} s_{2}-\frac{3}{2} \delta .
$$

A variant of ρ is

$$
\begin{aligned}
\rho^{\prime}: \quad & A \longrightarrow \bar{K} \\
& f \longrightarrow \sum_{r \in R} r^{-1} \times f(r) .
\end{aligned}
$$

Tartaglia-Cardan's formulae

$$
\rho^{3}=s_{1}^{3}+\frac{27}{2} s_{3}-\frac{9}{2} s_{1} s_{2}-\frac{3}{2} \delta .
$$

and

$$
\rho^{\prime 3}=s_{1}^{3}+\frac{27}{2} s_{3}-\frac{9}{2} s_{1} s_{2}+\frac{3}{2} \delta .
$$

Further

$$
\rho \rho^{\prime}=s_{1}^{2}-3 s_{2}
$$

The root ξ of $h(x)$ can be expressed in terms of ρ and ρ^{\prime} as

$$
\xi=\frac{s_{1}+\rho+\rho^{\prime}}{3}
$$

Tartaglia-Cardan's formulae

$\operatorname{Alg}(A)$ is not the Galois closure of $K[x] / h(x)$.
Galois closure associated with the $\operatorname{Sym}(\{1,2,3\}$)-torsor $\operatorname{Bij}(R,\{1,2,3\})$. Not resoluble.

However $\operatorname{Alg}(A) \supset \operatorname{Alg}(B) \simeq K[x] / h(x)$ because the quotient of $\operatorname{Bij}\left(\operatorname{Roots}(h), \mu_{3}\right) \operatorname{by} \operatorname{Stab}(1) \subset \operatorname{Sym}\left(\mu_{3}\right)$ is isomorphic to the quotient of $\operatorname{Bij}(R,\{1,2,3\})$ by $\operatorname{Stab}(1) \in \operatorname{Sym}(\{1,2,3\})$.

Note that the quotient of $\operatorname{Bij}(R,\{1,2,3\})$ by $(123) \in \operatorname{Sym}(\{1,2,3\})$ is associated with $K[x] /\left(x^{2}-\Delta\right)$ while the quotient of $\operatorname{Bij}\left(R, \mu_{3}\right)$ by $\left(1 \zeta \zeta^{2}\right) \in \operatorname{Sym}\left(\mu_{3}\right)$ is associated with $K[x] /\left(x^{2}+3 \Delta\right)$.

Curves with a $\mu_{3} \rtimes \mu_{2}$ action

Set $S^{\prime}=S \cup\{3\}$ and $\rho^{\prime}: D^{\prime} \xrightarrow{\mu_{3}} D \xrightarrow{\rho} \mathbb{P}^{1}$, and π^{\prime} the composite map

$$
\pi^{\prime}: D^{\prime} \longrightarrow A \xrightarrow{\mu_{2}} B .
$$

Then ($D^{\prime}, \rho^{\prime}, \pi^{\prime}$) is an S^{\prime}-parameterization of B. Say that C is the resolvent of B.

Curves with a $\mu_{3} \rtimes \mu_{2}$ action

D^{\prime} isabsolutely integral:
(1) When $C=\mathbb{P}^{1}$ and π and ρ are trivial.
(2) When the μ_{3}-quotient $A \rightarrow C$ is branched at some P of C, and π is not. When C has genus 1 we may compose π with a translation to ensure that it is not branched at P.
(3) When the degree of π is prime to 3 . The resulting parameterization π^{\prime} has degree prime to 3 also. We can iterate in that case.

Selecting curves

Find curve A with a $\mu_{3} \rtimes \mu_{2}$ action. Set $E=A /\left(\mu_{3} \rtimes \mu_{2}\right)$.

We know how to parameterize C. We want to parameterize B.
Take $E=\mathbb{P}^{1}$ (more generic).
r the number of branched points of $B \rightarrow E, r_{s}$ the number of simple branched points, r_{t} the number of fully branched points.

Selecting curves

$$
g_{B}=\frac{r_{s}}{2}+r_{t}-2, \text { and } g_{A}=\frac{3 r_{s}}{2}+2 r_{t}-5, \text { and } g_{C}=\frac{r_{s}}{2}-1 .
$$

Call

$$
m=r-3=r_{s}+r_{t}-3
$$

and call it the modular dimension. Genericity condition

$$
r_{s}+4 r_{t} \leq 12-2 \epsilon\left(\frac{r_{s}}{2}+r_{t}-2\right)
$$

where $\epsilon(0)=3, \epsilon(1)=1$, and $\epsilon(n)=0$ for $n \geq 2$.
(1) Set $g_{C}=0$. So $r_{s}=2, g_{B}=r_{t}-1$ and the genericity condition reads $r_{t} \leq 2$. Only $r_{t}=2$ is of interest. Farashahi and Kammerer, Lercier, Renault.
(2) Set $g_{C}=1$. So $r_{s}=4$ and $g_{B}=r_{t}$. The genericity assumption reads $r_{t} \leq 2$. The case $r_{t}=2$ provides encodings for genus 2 curves.

$r_{s}=r_{t}=2$

$g_{C}=0, g_{B}=1, g_{A}=2$, and $B \rightarrow \mathbb{P}^{1}$ has degree 3 with two fully branched points and two simply branched points. Call P_{0} and P_{∞} the two fully ramified points. Assume $P_{0}, P_{\infty} \in B(K)$. The difference $P_{0}-P_{\infty}$ is in $J_{B}[3]$.

Genus 1 curve with 3 -torsion

Genus 1 curve B / K and two points P_{0}, P_{∞} in $B(K)$ s. t. $P_{\infty}-P_{0}$ has order 3. $z \in K(B)$ with divisor $3\left(P_{0}-P_{\infty}\right)$.
$\sigma: B \rightarrow B$ involution sending P_{0} onto P_{∞}.
There exists $a_{0,0} \in K^{*}$ s. t. $\sigma(z) \times z=a_{0,0}$. x a degree 2 function, invariant by σ, with $(x)_{\infty}=P_{0}+P_{\infty}$. The sum $z+\sigma(z)$ belongs to $K(x)$. As a function on \mathbb{P}^{1} it has a single pole of multiplicity 3 at $x=\infty$.

$$
z+\frac{a_{0,0}}{z}=x^{3}+a_{1,1} x+a_{0,1}
$$

The image of $x \times z: B \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ has equation

$$
Z_{0} Z_{1}\left(X_{1}^{3}+a_{1,1} X_{1} X_{0}^{2}+a_{0,1} X_{0}^{3}\right)=X_{0}^{3}\left(Z_{1}^{2}+a_{0,0} Z_{0}^{2}\right) .
$$

Genus 1 curve with 3 -torsion

$$
z_{0} Z_{1}\left(X_{1}^{3}+a_{1,1} X_{1} X_{0}^{2}+a_{0,1} X_{0}^{3}\right)=X_{0}^{3}\left(Z_{1}^{2}+a_{0,0} Z_{0}^{2}\right) .
$$

$B^{\star} \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$ with arithmetic genus 2 . Call $S=(j, k)$ the singular point. We find

$$
\begin{gather*}
a_{0,0}=k^{2}, a_{1,1}=-3 j^{2}, a_{0,1}=2 k+2 j^{3} . \\
z^{2}+k^{2}=z\left(x^{3}-3 j^{2} x+2\left(k+j^{3}\right)\right) . \tag{1}
\end{gather*}
$$

This is a degree 3 equation in x with twisted discriminant $81(1-k / z)^{2}$ times

$$
h(z)=z^{2}-\left(2 k+4 j^{3}\right) z+k^{2} .
$$

The resolvent C has equation $t^{2}=h(z)$ and genus 0 . We can parameterize B with cubic radicals.

$r_{s}=4$ and $r_{t}=2$

$g_{C}=1, g_{B}=2, g_{A}=5$, and $B \rightarrow \mathbb{P}^{1}$ has degree 3 with two fully branched points and four simply branched points. Call P_{0} and P_{∞} the two fully ramified points. Assume $P_{0}, P_{\infty} \in B(K)$. The difference $P_{0}-P_{\infty}$ is in $J_{B}[3]$.

Genus 2 curve with 3-torsion

Genus 2 curve B / K and P_{0}, P_{∞} in $B(K)$ with $P_{\infty}-P_{0}$ of order 3. Assume $\sigma\left(P_{0}\right) \neq P_{\infty}$.
x a degree 2 function with a zero at P_{0} and a pole at P_{∞}.
z with divisor $3\left(P_{0}-P_{\infty}\right)$.
Image of $x \times z: B \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ has equation

$$
\sum_{\substack{0 \leqslant i \leqslant 3 \\ 0 \leqslant j \leqslant 2}} a_{i, j} X_{1}^{i} X_{0}^{3-i} Z_{1}^{j} z_{0}^{2-j}=0 .
$$

z is ∞ at a single point, and x has a pole at this point. So if we set $Z_{0}=0$ we find a multiple of $Z_{1}^{2} X_{0}^{3}$. We deduce that

$$
a_{3,2}=a_{2,2}=a_{1,2}=0, a_{0,2} \neq 0 .
$$

Similarly

$$
a_{2,0}=a_{1,0}=a_{0,0}=0, a_{3,0} \neq 0 .
$$

Genus 2 curve with 3-torsion

Plane affine model

$$
\left(a_{3,0}+a_{3,1} z\right) x^{3}+\left(a_{1,1}+a_{2,1} x\right) z x+\left(a_{0,1}+a_{0,2} z\right) z=0
$$

Degree 3 equation in x with twisted discriminant
$z^{2}\left(a_{3,0}+a_{3,1} z\right)^{-4}$ times

$$
\begin{aligned}
h(z)= & \left(9 a_{0,2} a_{3,1}\right)^{2} z^{4}+\left(12 a_{0,2} a_{2,1}^{3}+162 a 3,0 a_{0,2}^{2} a_{3,1}-54 a_{1,1} a_{2,1} a_{0,2} a_{3,1}+162 a_{0,1} a_{3,1}^{2} a_{0,2}\right) z^{3} \\
+ & \left(81 a_{3,0}^{2} a_{0,2}^{2}+12 a_{0,1} a_{2,1}^{3}-54 a_{1,1} a_{2,1} a_{0,1} a_{3,1}+324 a_{3,0} a_{0,1} a_{0,2} a_{3,1}-3 a_{1,1}^{2} a_{2,1}^{2}\right. \\
& \left.-54 a_{3,0} a_{1,1} a_{2,1} a_{0,2}+81 a_{0,1}^{2} a_{3,1}^{2}+12 a_{3,1} a_{1,1}^{3}\right) z^{2} \\
+ & \left(12 a_{1,1}^{3} a_{3,0}-54 a_{3,0} a_{1,1} a_{2,1} a_{0,1}+162 a_{3,0}^{2} a_{0,1} a_{0,2}+162 a_{3,0} a_{0,1}^{2} a_{3,1}\right) z+\left(9 a_{3,0} a_{0,1}\right)^{2} .
\end{aligned}
$$

We can parameterize B with cubic radicals. We first parameterize the elliptic curve with equation $t^{2}=h(z)$. We deduce a parameterization of B applying Tartaglia-Cardan formulae to the cubic equation.

Genus 2 curve with 3 -torsion

Degree 2 in z

$$
a_{0,2} z^{2}+\left(a_{3,1} x^{3}+a_{2,1} x^{2}+a_{1,1} x+a_{0,1}\right) z+a_{3,0} x^{3}=0
$$

Discriminant

$$
\Delta(x)=\left(a_{3,1} x^{3}+a_{2,1} x^{2}+a_{1,1} x+a_{0,1}\right)^{2}-4 a_{0,2} a_{3,0} x^{3}
$$

A Weierstrass model for B is then $u^{2}=\Delta(x)$.
Conversely, from $u^{2}=m_{6}(x)$, write $m(x)$ as a difference $m_{3}(x)^{2}-m_{2}(x)^{3}$. Send the roots of m_{2} to 0 and ∞.
Succeeds for every genus two curve having a rational 3-torsion point in its jacobian that splits e.g. can be represented as a difference between two rational points on B.

Example

K the field with 83 elements. B curve $y^{2}=f(x)$ with

$$
f(x)=x^{6}+39 x^{5}+64 x^{4}+7 x^{3}+x^{2}+19 x+36 .
$$

Write $f(x)=b^{2}-a^{3}$ with $b(x)=68 x^{3}+53 x^{2}+37 x+76$ and $a(x)=53 x^{2}+29 x+54=53(x-10)(x-38)$.
Change of variable $x \leftarrow(10 x+38) /(x+1)$ turns f into

$$
\left(42 x^{3}+43 x^{2}+45 x+25\right)^{2}-77 x^{3}
$$

$$
a_{3,1}=42, a_{2,1}=43, a_{1,1}=45, a_{0,1}=25, a_{0,2}=40, a_{3,0}=1 .
$$

The resolvent is elliptic curve

$$
t^{2}=h(z)=30 z^{4}+50 z^{3}+44 z^{2}+46 z+78 .
$$

Curves with a $\mu_{5} \rtimes \mu_{2}$ action

C a genus two curve with $P_{\infty}-P_{0}$ of order 5 in J_{C}. $A \rightarrow C$ associated unramified μ_{5}-cover.
The involution σ lifts to A. Set $B=A / \sigma$. Then $g_{B}=2$.
The corresponding moduli space is rational.

Composing parameterizations

Other families of covers

(1) $\mu_{3} \rtimes \mu_{2}$ with $\left(r_{s}, r_{t}\right)=(6,1)$
B and C have genus 2 . The map $B \rightarrow E$ is any degree 3 map with a triple pole. One for every non-Weierstrass point P on B. Family of parameterizations of B by genus two curves C_{P}, non-isotrivial. However, $J_{C_{P}}[3] \simeq J_{B}[3]$.
(2) $\mu_{3} \rtimes \mu_{2}$ with $\left(r_{s}, r_{t}\right)=(8,1)$
B and C have genus 3 . The map $B \rightarrow E$ has degree 3 and a triple pole P, a Weierstrass point. C is hyperelliptic.
Every genus 3 curve B with a Weierstrass point is parameterized by a genus 3 hyperelliptic curve.

