

Conférence de lancement de l'ANR Ciao, Février 2020, Bordeaux, France

VERIFIABLE DELAY FUNCTIONS

Benjamin Wesolowski

VERIFIABLE DELAY FUNCTIONS

How to slow things down

VERIFIABLE DELAY FUNCTIONS

[Boneh, Bonneau, Bünz, Fisch 2018] A VDF is a function that

- Requires time to evaluate (sequential evaluation, and parallelism does not allow to go faster)
- The output can easily be verified

Syntactically:

- setup(T) \rightarrow public parameters pp
- → $eval(pp, x) \rightarrow output y$, proof π (takes time T)

→ **verify**(*pp*, *x*, *y*,
$$\pi$$
) → {true, false}

REQUIREMENTS

We need the following properties:

- Sequentiality: if A is a parallel algorithm such that time(A, x) < T, then A cannot distinguish eval(pp, x) from random
- Uniqueness: if verify(pp, x, y, π) = verify(pp, x, y', π') = true, then y = y'

PUBLIC RANDOMNESS

A motivation

AD HOC "METHODS"

A CRYPTOGRAPHIC ATTEMPT

A group G of people want to generate some randomness:

- Each person $A \in G$ generates privately a random bit-string r_A
- They all broadcast a commitment c(r_A) (hiding, binding)
- Once all the commitments are distributed, everyone opens

Random value is
$$r = \bigoplus_{A \in G} r_A$$

'Commit-then-reveal' protocol

A CRYPTOGRAPHIC ATTEMPT

- Two rounds
- Does not scale!
- If someone does not open the commitment, need to restart

'Commit-then-reveal' protocol

SLOTH AND UNICORN

Solution proposed in [Lenstra, W. 2017]:

Instead of commitments, each party A directly reveals r_A

No commitment, so no 'opening' phase

Trouble: last person to reveal has full control of r = \bigoplus rA... A \in G

Instead, let $r = f(r_{A_1} || r_{A_2} || ... || r_{A_n})$, where f takes **time** to evaluate (in [Lenstra, W. 2017] the *Sloth* function)

If f takes 10 minutes, nobody knows r until 10 minutes after the last reveal: impossible to manipulate r!

VERIFIABLE DELAY FUNCTION

We want

- f(x) slow to evaluate, even for parties with a lot of parallel power or specialised hardware
- f(x) = y easy to **verify** by anyone

Use a verifiable delay function

A VERIFIABLE DELAY FUNCTION *Slow yet efficient*

ITERATED HASHING

What is slow to compute, and cannot be sped up by parallelism? Maybe iterated hashing...

$$x \longrightarrow H(x) \longrightarrow H(H(x)) \longrightarrow \dots \longrightarrow H(\dots H(H(x))\dots) = y$$

- Slow, sequential computation... but how to check f(x) = y?
- No simple and efficient way...

TIME LOCK PUZZLE

Drawing inspiration from time-lock puzzles [Rivest, Shamir, Wagner 1996]

- Let *G* be a group of unknown order
- Given $x \in G$, computing x^{2^T} requires T sequential squarings

$$x \longrightarrow x^2 \longrightarrow x^{2^2} \longrightarrow x^{2^3} \longrightarrow \dots \longrightarrow x^{2^7}$$

• The VDF could be $f(x) = x^{2^{T}}$, but can this be verified?

Approach of [W. 2019], also taken in [Pietrzak 2019]

PROOF OF CORRECT EXPONENTIATION

• Given $(x, y) \in G$, Alice wants to prove that $y = x^{2^T}$

Together with $y = x^{2^{T}}$, Alice computes a 'proof' π

Given (x, y, π), anyone can efficiently verify that $y = x^{2^T}$

- We present the method as an interactive protocol: Alice wants to prove to Bob (the verifier) that $y = x^{2^{T}}$
- The protocols is then be made non-interactive (Fiat-Shamir...)

INTERACTIVE ARGUMENT

• Given $(x, y) \in G$, Alice wants to prove to Bob that $y = x^{2^T}$

NON-INTERACTIVE VDF

The VDF on input $x \in G$ is the following:

• Compute $y = x^{2^{T}}$ (slow, sequential part)

→ Let
$$\ell$$
 = hash_to_prime(x,y,T)

→ Find q and r such that $2^{T} = q\ell + r$, and $0 \leq r < \ell$

• Compute $\pi = x^q$ How long does the computation of π take?

→ Output: (y, π), only 2 group elements

• verify(*pp*, *x*, *y*, π): $\pi^{\ell} x^{r} = y$, only 2 small exponentiations

PROPERTIES

	number of group elements	number of group operations		
	Size of proof	Evaluation	Verifier	
Sloth [Lenstra, W. 2017]	1	7	<i>O</i> (<i>T</i>)	
[Pietrzak 2019]	log(<i>T</i>)	$T(1 + 2/T^{1/2})$	<i>O</i> (log(<i>T</i>))	
This work [W. 2019]	1	$T(1 + 2/\log(T))$	<i>O</i> (1)	

SECURITY

• Given $(x, y) \in G$, Alice wants to prove to Bob that $y = x^{2^T}$

SECURITY

- Suppose $y \neq x^{2^{T}}$ (i.e., Alice is dishonest)
- Let $w = y/x^{2^T} \neq 1_G$
- ▶ Claim: for Alice to convince Bob, she must be able to extract *C*-th roots of *w* with good probability (unpredictable *C*)
- **Proof:** when Bob generates a random ℓ , Alice computes π such that $\pi^{\ell}x^r = y$ (acceptance condition), where $2^{\tau} = q\ell + r$. Let $\rho = \pi/x^q$. Then,

$$\varrho^{\ell} = \pi^{\ell} / x^{q\ell} = (y/x^{r}) / x^{q\ell} = y/x^{q\ell+r} = w$$

i.e., ρ is an ℓ -th root of w

ADAPTIVE ROOT ASSUMPTION

We assume the following game is hard in the group G:

- The player outputs an element $w \in G$, other than the neutral element 1_G
- > The challenger generates a random (large) prime ℓ
- The player has to find an \mathscr{C} -th root of w (i.e., $w^{1/\mathscr{C}}$)

In which groups does this assumption hold?

GROUPS OF UNKNOWN ORDER

From number theory

THE PROBLEM WITH KNOWN ORDER

- Suppose $w \in G$ has known order n
- For the challenger generates a random (large) prime ${\ensuremath{\mathscr{C}}}$
- Computing $k = \ell^{-1} \mod n$ is easy (invertible with overwhelming probability)
- w^k is an \mathscr{C} -th root of w

RSA GROUPS

- Let N = pq an RSA modulus
- Without the factorisation of N, order of $(\mathbb{Z}/N\mathbb{Z})^{\times}$ is unknown
- We still know the small subgroup $\{\pm 1\}$... trouble
- Use $G = (\mathbb{Z}/N\mathbb{Z})^{\times}/\{\pm 1\}$
- Problem: need to generate N so that nobody knows the factorisation (trusted setup? large random N? MPC?)

RSA MPC

Goal of the Ethereum Foundation and Protocol labs, working with Ligero:

- A 2048 bits modulus N, secret factorisation
- ▶ Result of an (n − 1)-maliciously secure MPC
- 1024 participants

CLASS GROUPS

Let p be a random large prime, K the imaginary quadratic field of discriminant -p, and G its class group

- Computing the order of G is hard (complexity $L_p(1/2)$)
- Easy setup! Can even change p at every new evaluation... becomes 'quantum resistant'
- Careful: the 2-torsion is easy to compute

ADAPTIVE ROOT ASSUMPTION

- Open question: « adaptive root assumption » is not known to be equivalent to finding an element of known order
- It is hard in the generic group model [Boneh, Bünz, Fisch 2018]
- Is it as hard as it looks in RSA groups and class groups? At least, root extraction (non-adaptive) is believed to be hard

SLOWNESS IN THE REAL WORLD

Practical considerations

TIME LOCK ASSUMPTION

Assumption: computing

$$x \longrightarrow x^2 \longrightarrow x^{2^2} \longrightarrow x^{2^3} \longrightarrow \dots \longrightarrow x^{2^T}$$

takes time $\approx T \times (\text{latency of one squaring in the group})$

- What is that latency?
- Can a rich adversary get a much better latency than easily available hardware?

Solution: massively invest in building the fastest hardware, and make it widely available

\$100,000 COMPETITION

Chia Network organises a VDF competition (second round finished Jul 18 with \$100,000 in total prize money)

- Fastest possible implementation of class group arithmetic
- https://www.chia.net

\$1,000,000 COMPETITION

Funded 50/50 by the Ethereum Foundation and Protocol Labs

- Fastest possible implementation of modular arithmetic, modulo a 2048-bit RSA modulus
- Latency of 1ns per squaring?
- https://vdfresearch.org

LOWER BOUNDS?

Let

$\mathsf{MODSQ}\operatorname{\mathsf{-MOD2}}_{b,N}: \{0, 1\}^b \longrightarrow \{0, 1\}$

the function that sends x to the least significant bit of $(x^2 \mod N)$

Theorem [W., Williams 2020]: For all odd $0 \le N \le 2^b - 1$, every fan-in two circuit of depth less than $\log_2(b - O(1))$ fails to compute MODSQ-MOD2_{*b*,*N*} on at least 24% of all *b*-bit inputs

In simpler words: A circuit that performs « squaring modulo $N \gg$ in binary representation reliably has depth at least $\approx \log_2(b)$

Conférence de lancement de l'ANR Ciao, Février 2020, Bordeaux, France

VERIFIABLE DELAY FUNCTIONS

Benjamin Wesolowski