
VERIFIABLE DELAY FUNCTIONS
Conférence de lancement de l'ANR Ciao, Février 2020, Bordeaux, France

Benjamin Wesolowski

VERIFIABLE
DELAY FUNCTIONS
How to slow things down

3

VERIFIABLE DELAY FUNCTIONS
[Boneh, Bonneau, Bünz, Fisch 2018] A VDF is a function that

‣ Requires time to evaluate (sequential evaluation, and
parallelism does not allow to go faster)

‣ The output can easily be verified

Syntactically:

➡ setup(T) → public parameters pp

➡ eval(pp, x) → output y, proof π (takes time T)

➡ verify(pp, x, y, π) → {true, false}

4

REQUIREMENTS

We need the following properties:

‣ Sequentiality: if A is a parallel algorithm such that
time(A, x) < T, then A cannot distinguish eval(pp, x) from
random

‣ Uniqueness: if verify(pp, x, y, π) = verify(pp, x, y’, π’) =
true, then y = y’

PUBLIC
RANDOMNESS

A motivation

6

AD HOC "METHODS"

7

A CRYPTOGRAPHIC ATTEMPT

A group G of people want to generate some randomness:

‣ Each person A ∊ G generates privately a random bit-string rA

‣ They all broadcast a commitment c (rA) (hiding, binding)

‣ Once all the commitments are distributed, everyone opens

‣ Random value is r = ⊕ rA
A ∊ G

‘Commit-then-reveal’ protocol

8

A CRYPTOGRAPHIC ATTEMPT

‣ Two rounds

‣ Does not scale!

‣ If someone does not open the commitment, need to restart

‘Commit-then-reveal’ protocol

9

SLOTH AND UNICORN
Solution proposed in [Lenstra, W. 2017]:

‣ Instead of commitments, each party A directly reveals rA

‣ Instead, let r = f (rA1 || rA2 || … || rAn), where f takes time to
evaluate (in [Lenstra, W. 2017] the Sloth function)

No commitment, so no ‘opening’ phase

If f takes 10 minutes, nobody knows r
until 10 minutes after the last reveal:

impossible to manipulate r!

Trouble: last person to reveal has full control of r = ⊕ rA…
A ∊ G

10

VERIFIABLE DELAY FUNCTION

We want

‣ f (x) slow to evaluate, even for parties with a lot of parallel
power or specialised hardware

‣ f (x) = y easy to verify by anyone

Use a verifiable delay function

A VERIFIABLE
DELAY FUNCTION

Slow yet efficient

12

ITERATED HASHING
What is slow to compute, and cannot be sped up by
parallelism? Maybe iterated hashing…

‣ Slow, sequential computation… but how to check f (x) = y?

‣ No simple and efficient way…

x ⟶ H(x) ⟶ H(H(x)) ⟶ … ⟶ H(… H(H(x))…) = y

13

TIME LOCK PUZZLE
Drawing inspiration from time-lock puzzles [Rivest, Shamir,
Wagner 1996]

‣ Let G be a group of unknown order

‣ Given x ∈ G, computing x2T requires T sequential squarings

‣ The VDF could be f (x) = x2T, but can this be verified?

Approach of [W. 2019], also taken in [Pietrzak 2019]

x ⟶ x2 ⟶ x22 ⟶ x23 ⟶ … ⟶ x2T

▸ Given (x, y) ∈ G, Alice wants to prove that y = x2T

➡ Together with y = x2T, Alice computes a ‘proof’ π

➡ Given (x, y, π), anyone can efficiently verify that y = x2T

▸ We present the method as an interactive protocol: Alice wants
to prove to Bob (the verifier) that y = x2T

▸ The protocols is then be made non-interactive (Fiat-Shamir…)

PROOF OF CORRECT EXPONENTIATION

14

▸ Given (x, y) ∈ G, Alice wants to prove to Bob that y = x2T

Alice Bob
Choose a random
(large) prime 𝓵

𝓵

Find q and r such that
2T = q𝓵 + r, 0 ≤ r < 𝓵 π = xq

Compute r = 2T mod 𝓵
Accept if π𝓵xr = y

INTERACTIVE ARGUMENT

15

The VDF on input x ∈ G is the following:

➡ Compute y = x2T (slow, sequential part)

➡ Let 𝓵 = hash_to_prime(x,y,T)

➡ Find q and r such that 2T = q𝓵 + r, and 0 ≤ r < 𝓵

➡ Compute π = xq

➡ Output: (y, π), only 2 group elements

▸ verify(pp, x, y, π): π𝓵xr = y, only 2 small exponentiations

How long does the computation of 𝝅 take?

NON-INTERACTIVE VDF

16

PROPERTIES

Size of proof Evaluation Verifier

Sloth [Lenstra,
W. 2017]

1 T O(T)

[Pietrzak 2019] log(T) T(1 + 2/T1/2) O(log(T))

This work
[W. 2019]

1 T(1 + 2/log(T)) O(1)

number of group
elements number of group operations

17

▸ Given (x, y) ∈ G, Alice wants to prove to Bob that y = x2T

Alice Bob
Choose a random
(large) prime 𝓵

𝓵

Find q and r such that
2T = q𝓵 + r, 0 ≤ r < 𝓵 π = xq

Compute r = 2T mod 𝓵
Accept if π𝓵xr = y

SECURITY

18

▸ Suppose y ≠ x2T (i.e., Alice is dishonest)

▸ Let w = y/x2T ≠ 1G

▸ Claim: for Alice to convince Bob, she must be able to extract
𝓵-th roots of w with good probability (unpredictable 𝓵)

▸ Proof: when Bob generates a random 𝓵, Alice computes π such
that π𝓵xr = y (acceptance condition), where 2T = q𝓵 + r. Let
𝝔 = π/xq. Then,

i.e., 𝝔 is an 𝓵-th root of w

𝝔𝓵 = π𝓵/x q𝓵 = (y/x r)/x q𝓵 = y/x q𝓵 + r = w

SECURITY

19

We assume the following game is hard in the group G:

▸ The player outputs an element w ∈ G, other than the neutral
element 1G

▸ The challenger generates a random (large) prime 𝓵

▸ The player has to find an 𝓵-th root of w (i.e., w 1/𝓵)

In which groups does this assumption hold?

ADAPTIVE ROOT ASSUMPTION

20

GROUPS OF
UNKNOWN ORDER

From number theory

▸ Suppose w ∈ G has known order n

▸ The challenger generates a random (large) prime 𝓵

▸ Computing k = 𝓵 –1 mod n is easy (invertible with
overwhelming probability)

▸ wk is an 𝓵-th root of w

THE PROBLEM WITH KNOWN ORDER

22

Let N = pq an RSA modulus

▸ Without the factorisation of N, order of (ℤ/Nℤ)× is unknown

▸ We still know the small subgroup {±1}… trouble

▸ Use G = (ℤ/Nℤ)×/{±1}

▸ Problem: need to generate N so that nobody knows the
factorisation (trusted setup? large random N? MPC?)

RSA GROUPS

23

Goal of the Ethereum Foundation and Protocol labs, working with
Ligero:

▸ A 2048 bits modulus N, secret factorisation

▸ Result of an (n – 1)-maliciously secure MPC

▸ 1024 participants

RSA MPC

24

Let p be a random large prime, K the imaginary quadratic field of
discriminant –p, and G its class group

▸ Computing the order of G is hard (complexity Lp(1/2))

▸ Easy setup! Can even change p at every new evaluation…
becomes ‘quantum resistant’

▸ Careful: the 2-torsion is easy to compute

CLASS GROUPS

25

‣ Open question:« adaptive root assumption » is not known to
be equivalent to finding an element of known order

‣ It is hard in the generic group model [Boneh, Bünz, Fisch 2018]

‣ Is it as hard as it looks in RSA groups and class groups? At
least, root extraction (non-adaptive) is believed to be hard

ADAPTIVE ROOT ASSUMPTION

26

SLOWNESS IN
THE REAL WORLD
Practical considerations

Assumption: computing

takes time ≈T×(latency of one squaring in the group)

‣ What is that latency?

‣ Can a rich adversary get a much better latency than easily
available hardware?

TIME LOCK ASSUMPTION

x ⟶ x2 ⟶ x22 ⟶ x23 ⟶ … ⟶ x2T

Solution: massively invest in building the fastest
hardware, and make it widely available

28

Chia Network organises a VDF competition (second round
finished Jul 18 with $100,000 in total prize money)

‣ Fastest possible implementation of class group arithmetic

‣ https://www.chia.net

$100,000 COMPETITION

29

https://www.chia.net

Funded 50/50 by the Ethereum Foundation and Protocol Labs

‣ Fastest possible implementation of modular arithmetic,
modulo a 2048-bit RSA modulus

‣ Latency of 1ns per squaring?

‣ https://vdfresearch.org

$1,000,000 COMPETITION

30

https://vdfresearch.org

Let

MODSQ-MOD2b,N : {0, 1}b ⟶ {0, 1}

the function that sends x to the least significant bit of (x2 mod N)

Theorem [W., Williams 2020]: For all odd 0 ≤ N ≤ 2b − 1,
every fan-in two circuit of depth less than log2(b – O(1)) fails to
compute MODSQ-MOD2b,N on at least 24% of all b-bit inputs

In simpler words: A circuit that performs « squaring modulo N »
in binary representation reliably has depth at least ≈log2(b)

LOWER BOUNDS?

31

VERIFIABLE DELAY FUNCTIONS
Conférence de lancement de l'ANR Ciao, Février 2020, Bordeaux, France

Benjamin Wesolowski

