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VERIFIABLE DELAY FUNCTIONS
[Boneh, Bonneau, Bünz, Fisch 2018] A VDF is a function that 

‣ Requires time to evaluate (sequential evaluation, and 
parallelism does not allow to go faster) 

‣ The output can easily be verified 

Syntactically: 

➡ setup(T) → public parameters pp 

➡ eval(pp, x) → output y, proof π (takes time T) 

➡ verify(pp, x, y, π) → {true, false}



4

REQUIREMENTS

We need the following properties: 

‣ Sequentiality: if A is a parallel algorithm such that    
time(A, x) < T, then A cannot distinguish eval(pp, x) from 
random 

‣ Uniqueness: if verify(pp, x, y, π) = verify(pp, x, y’, π’) = 
true, then y = y’



PUBLIC 
RANDOMNESS

A motivation



6

AD HOC "METHODS"
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A CRYPTOGRAPHIC ATTEMPT

A group G of people want to generate some randomness: 

‣ Each person A ∊ G generates privately a random bit-string rA  

‣ They all broadcast a commitment c (rA) (hiding, binding) 

‣ Once all the commitments are distributed, everyone opens 

‣ Random value is r = ⊕ rA
A ∊ G

‘Commit-then-reveal’ protocol
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A CRYPTOGRAPHIC ATTEMPT

‣ Two rounds 

‣ Does not scale! 

‣ If someone does not open the commitment, need to restart

‘Commit-then-reveal’ protocol
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SLOTH AND UNICORN
Solution proposed in [Lenstra, W. 2017]: 

‣ Instead of commitments, each party A directly reveals rA  

‣ Instead, let r = f (rA1 || rA2 || … || rAn), where f takes time to 
evaluate (in [Lenstra, W. 2017] the Sloth function)

No commitment, so no ‘opening’ phase

If f takes 10 minutes, nobody knows r 
until 10 minutes after the last reveal: 

impossible to manipulate r!

Trouble: last person to reveal has full control of r = ⊕ rA…
A ∊ G
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VERIFIABLE DELAY FUNCTION

We want 

‣ f (x) slow to evaluate, even for parties with a lot of parallel 
power or specialised hardware 

‣ f (x) = y easy to verify by anyone 

Use a verifiable delay function



A VERIFIABLE 
DELAY FUNCTION

Slow yet efficient
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ITERATED HASHING
What is slow to compute, and cannot be sped up by 
parallelism? Maybe iterated hashing… 

‣ Slow, sequential computation… but how to check f (x) = y?  

‣ No simple and efficient way…

x ⟶ H(x) ⟶ H(H(x)) ⟶ … ⟶ H(… H(H(x))…) = y
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TIME LOCK PUZZLE
Drawing inspiration from time-lock puzzles [Rivest, Shamir, 
Wagner 1996] 

‣ Let G be a group of unknown order 

‣ Given x ∈ G, computing x2T requires T sequential squarings 

‣ The VDF could be f (x) = x2T, but can this be verified? 

Approach of [W. 2019], also taken in [Pietrzak 2019]

x ⟶ x2 ⟶ x22 ⟶ x23 ⟶ … ⟶ x2T



▸ Given (x, y) ∈ G, Alice wants to prove that y = x2T  

➡ Together with y = x2T, Alice computes a ‘proof’ π  

➡ Given (x, y, π), anyone can efficiently verify that y = x2T 

▸ We present the method as an interactive protocol: Alice wants 
to prove to Bob (the verifier) that y = x2T  

▸ The protocols is then be made non-interactive (Fiat-Shamir…)

PROOF OF CORRECT EXPONENTIATION
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▸ Given (x, y) ∈ G, Alice wants to prove to Bob that y = x2T 

Alice Bob
Choose a random 
(large) prime 𝓵

𝓵

Find q and r such that 
2T = q𝓵 + r, 0 ≤ r < 𝓵 π = xq 

Compute r = 2T mod 𝓵
Accept if π𝓵xr = y

INTERACTIVE ARGUMENT
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The VDF on input x ∈ G is the following: 

➡ Compute y = x2T (slow, sequential part) 

➡ Let 𝓵 = hash_to_prime(x,y,T)  

➡ Find q and r such that 2T = q𝓵 + r, and 0 ≤ r < 𝓵 

➡ Compute π = xq  

➡ Output: (y, π), only 2 group elements 

▸ verify(pp, x, y, π): π𝓵xr = y, only 2 small exponentiations

How long does the computation of 𝝅 take?

NON-INTERACTIVE VDF
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PROPERTIES

Size of proof Evaluation Verifier

Sloth [Lenstra, 
W. 2017]

1 T O(T)

[Pietrzak 2019] log(T) T(1 + 2/T1/2) O(log(T))

This work 
[W. 2019]

1 T(1 + 2/log(T)) O(1)

number of group 
elements number of group operations
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▸ Given (x, y) ∈ G, Alice wants to prove to Bob that y = x2T 

Alice Bob
Choose a random 
(large) prime 𝓵

𝓵

Find q and r such that 
2T = q𝓵 + r, 0 ≤ r < 𝓵 π = xq 

Compute r = 2T mod 𝓵
Accept if π𝓵xr = y

SECURITY
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▸ Suppose y ≠ x2T (i.e., Alice is dishonest) 

▸ Let w = y/x2T ≠ 1G  

▸ Claim: for Alice to convince Bob, she must be able to extract   
𝓵-th roots of w with good probability (unpredictable 𝓵) 

▸ Proof: when Bob generates a random 𝓵, Alice computes π such 
that π𝓵xr = y (acceptance condition), where 2T = q𝓵 + r. Let     
𝝔 = π/xq. Then, 

i.e., 𝝔 is an 𝓵-th root of w

𝝔𝓵 = π𝓵/x q𝓵 = (y/x r)/x q𝓵 = y/x q𝓵 + r = w

SECURITY
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We assume the following game is hard in the group G: 

▸ The player outputs an element w ∈ G, other than the neutral 
element 1G 

▸ The challenger generates a random (large) prime 𝓵  

▸ The player has to find an 𝓵-th root of w (i.e., w 1/𝓵) 

In which groups does this assumption hold?

ADAPTIVE ROOT ASSUMPTION
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GROUPS OF 
UNKNOWN ORDER

From number theory



▸ Suppose w ∈ G has known order n  

▸ The challenger generates a random (large) prime 𝓵  

▸ Computing k = 𝓵 –1 mod n is easy (invertible with 
overwhelming probability) 

▸ wk is an 𝓵-th root of w 

THE PROBLEM WITH KNOWN ORDER
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Let N = pq an RSA modulus 

▸ Without the factorisation of N, order of (ℤ/Nℤ)× is unknown 

▸ We still know the small subgroup {±1}… trouble 

▸ Use G = (ℤ/Nℤ)×/{±1} 

▸ Problem: need to generate N so that nobody knows the 
factorisation (trusted setup? large random N? MPC?)

RSA GROUPS
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Goal of the Ethereum Foundation and Protocol labs, working with 
Ligero: 

▸ A 2048 bits modulus N, secret factorisation 

▸ Result of an (n – 1)-maliciously secure MPC 

▸ 1024 participants

RSA MPC

24



Let p be a random large prime, K the imaginary quadratic field of 
discriminant –p, and G its class group 

▸ Computing the order of G is hard (complexity Lp(1/2)) 

▸ Easy setup! Can even change p at every new evaluation… 
becomes ‘quantum resistant’ 

▸ Careful: the 2-torsion is easy to compute

CLASS GROUPS
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‣ Open question:« adaptive root assumption » is not known to 
be equivalent to finding an element of known order 

‣ It is hard in the generic group model [Boneh, Bünz, Fisch 2018] 

‣ Is it as hard as it looks in RSA groups and class groups? At 
least, root extraction (non-adaptive) is believed to be hard

ADAPTIVE ROOT ASSUMPTION
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SLOWNESS IN 
THE REAL WORLD
Practical considerations



Assumption: computing 

takes time ≈T×(latency of one squaring in the group) 

‣ What is that latency? 

‣ Can a rich adversary get a much better latency than easily 
available hardware?

TIME LOCK ASSUMPTION

x ⟶ x2 ⟶ x22 ⟶ x23 ⟶ … ⟶ x2T

Solution: massively invest in building the fastest 
hardware, and make it widely available

28



Chia Network organises a VDF competition (second round 
finished Jul 18 with $100,000 in total prize money) 

‣ Fastest possible implementation of class group arithmetic  

‣ https://www.chia.net

$100,000 COMPETITION
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https://www.chia.net


Funded 50/50 by the Ethereum Foundation and Protocol Labs 

‣ Fastest possible implementation of modular arithmetic, 
modulo a 2048-bit RSA modulus 

‣ Latency of 1ns per squaring? 

‣ https://vdfresearch.org 

$1,000,000 COMPETITION
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https://vdfresearch.org


Let 

MODSQ-MOD2b,N : {0, 1}b ⟶ {0, 1} 

the function that sends x to the least significant bit of (x2 mod N) 

Theorem [W., Williams 2020]: For all odd 0 ≤ N ≤ 2b − 1, 
every fan-in two circuit of depth less than log2(b – O(1)) fails to 
compute MODSQ-MOD2b,N on at least 24% of all b-bit inputs  

In simpler words: A circuit that performs « squaring modulo N » 
in binary representation reliably has depth at least ≈log2(b)

LOWER BOUNDS?
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