Verifiable Delay Functions and More from Isogenies and Pairings

Luca De Feo
based on joint work with J. Burdges, S. Masson, C. Petit, A. Sanso
IBM Research Zürich
December 4, 2019, ECC, Bochum
Slides online at https://defeo.lu/docet

Distributed lottery

Participants $\mathbf{A}, \mathbf{B}, \ldots, \mathbf{Z}$ want to agree on a random winning ticket.

Flawed protocol

- Each participant x broadcasts a random string s_{x};
- Winning ticket is $H\left(s_{A}, \ldots, s_{Z}\right)$.

Distributed lottery

Participants $\mathbf{A}, \mathbf{B}, \ldots, \mathbf{Z}$ want to agree on a random winning ticket.

Flawed protocol

- Each participant x broadcasts a random string s_{x};
- Winning ticket is $H\left(s_{A}, \ldots, s_{Z}\right)$.

Cheating participant \mathbf{Z} waits to see all other strings, then brute-forces s_{Z} to win lottery.

Distributed lottery

Participants $\mathbf{A}, \mathbf{B}, \ldots, \mathbf{Z}$ want to agree on a random winning ticket.

Flawed protocol

- Each participant x broadcasts a random string s_{x};
- Winning ticket is $H\left(s_{A}, \ldots, s_{Z}\right)$.

Cheating participant \mathbf{Z} waits to see all other strings, then brute-forces s_{Z} to win lottery.

Fixes

- Make the hash function sl0000000000000000000000000000w;
e.g., participants have 10 minutes to submit s_{x}, outcome will be known after 20 minutes.

Distributed lottery

Participants $\mathbf{A}, \mathbf{B}, \ldots, \mathbf{Z}$ want to agree on a random winning ticket.

Flawed protocol

- Each participant x broadcasts a random string s_{x};
- Winning ticket is $H\left(s_{A}, \ldots, s_{Z}\right)$.

Cheating participant \mathbf{Z} waits to see all other strings, then brute-forces s_{Z} to win lottery.

Fixes

- Make the hash function sl0000000000000000000000000000w;
e.g., participants have 10 minutes to submit s_{x}, outcome will be known after 20 minutes.
- Make it possible to verify $w=H\left(s_{A}, \ldots, s_{Z}\right)$ fast.

Verifiable Delay Functions (Boneh, Bonneau, Bünz, Fisch 2018)

Wanted

Function (family) $f: X \rightarrow Y$ s.t.:

- Evaluating $f(x)$ takes long time:
uniformly long time,
on almost all random inputs x,
even after having seen many values of $f\left(x^{\prime}\right)$,
even given massive number of processors;
- Verifying $y=f(x)$ is efficient:
ideally, exponential separation between evaluation and verification.

Verifiable Delay Functions (Boneh, Bonneau, Bünz, Fisch 2018)

Wanted

Function (family) $f: X \rightarrow Y$ s.t.:

- Evaluating $f(x)$ takes long time:
uniformly long time,
on almost all random inputs x,
even after having seen many values of $f\left(x^{\prime}\right)$,
even given massive number of processors;
- Verifying $y=f(x)$ is efficient:
ideally, exponential separation between evaluation and verification.

Exercise

Verifiable Delay Functions (Boneh, Bonneau, Bünz, Fisch 2018)

Wanted

Function (family) $f: X \rightarrow Y$ s.t.:

- Evaluating $f(x)$ takes long time:
uniformly long time,
on almost all random inputs x,
even after having seen many values of $f\left(x^{\prime}\right)$,
even given massive number of processors;
- Verifying $y=f(x)$ is efficient:
ideally, exponential separation between evaluation and verification.

Exercise

Think of a function you like with these properties

Verifiable Delay Functions (Boneh, Bonneau, Bünz, Fisch 2018)

Wanted

Function (family) $f: X \rightarrow Y$ s.t.:

- Evaluating $f(x)$ takes long time:
uniformly long time,
on almost all random inputs x,
even after having seen many values of $f\left(x^{\prime}\right)$, even given massive number of processors;
- Verifying $y=f(x)$ is efficient:
ideally, exponential separation between evaluation and verification.

Exercise

Think of a function you like with these properties
Got it?

Verifiable Delay Functions (Boneh, Bonneau, Bünz, Fisch 2018)

Wanted

Function (family) $f: X \rightarrow Y$ s.t.:

- Evaluating $f(x)$ takes long time:
uniformly long time, on almost all random inputs x, even after having seen many values of $f\left(x^{\prime}\right)$, even given massive number of processors;
- Verifying $y=f(x)$ is efficient:
ideally, exponential separation between evaluation and verification.

Exercise

Think of a function you like with these properties
Got it?
You're probably wrong!

Sequentiality

Ideal functionality:

$$
y=f(x)=\underbrace{H(H(\cdots(H(x))))}_{T \text { times }}
$$

- Sequential assuming hash output "unpredictability",
- but how do you verify? (you're not allowed to say "SNARKs")

VDFs from groups of unknown order (inspired by Rivest-Shamir-Wagner time-lock puzzle)

Setup

A group of unknown order, e.g.:

- $\mathbb{Z} / N \mathbb{Z}$ with $N=p q$ an RSA modulus, p, q unknown (e.g., generated by some trusted authority),
- Class group of imaginary quadratic order.

Evaluation

With delay parameter T :

$$
\begin{aligned}
f: G & \longrightarrow G \\
x & \longmapsto x^{2^{T}}
\end{aligned}
$$

Conjecturally, fastest algorithm is repeated squaring.

VDFs from groups of unknown order (inspired by Rivest-Shamir-Wagner time-lock puzzle)

Setup

A group of unknown order, e.g.:

- $\mathbb{Z} / N \mathbb{Z}$ with $N=p q$ an RSA modulus, p, q unknown (e.g., generated by some trusted authority),
- Class group of imaginary quadratic order.

Evaluation

With delay parameter T :

$$
\begin{aligned}
f: G & \longrightarrow G \\
x & \longmapsto x^{2^{T}}
\end{aligned}
$$

Conjecturally, fastest algorithm is repeated squaring.

VDFs from groups of unknown order (inspired by Rivest-Shamir-Wagner time-lock puzzle)

Setup

A group of unknown order, e.g.:

- $\mathbb{Z} / N \mathbb{Z}$ with $N=p q$ an RSA modulus, p, q unknown (e.g., generated by some trusted authority),
- Class group of imaginary quadratic order.

Evaluation

With delay parameter T :

$$
\begin{aligned}
f: G & \longrightarrow G \\
x & \longmapsto x^{2^{T}}
\end{aligned}
$$

Conjecturally, fastest algorithm is repeated squaring.

VDFs from groups of unknown order (inspired by Rivest-Shamir-Wagner time-lock puzzle)

Setup

A group of unknown order, e.g.:

- $\mathbb{Z} / N \mathbb{Z}$ with $N=p q$ an RSA modulus, p, q unknown (e.g., generated by some trusted authority),
- Class group of imaginary quadratic order.

Evaluation

With delay parameter T :

$$
\begin{aligned}
f: G & \longrightarrow G \\
x & \longmapsto x^{2^{T}}
\end{aligned}
$$

$$
x^{2^{T}}
$$

Conjecturally, fastest algorithm is repeated squaring.

VDFs from groups of unknown order (inspired by Rivest-Shamir-Wagner time-lock puzzle)

Setup

A group of unknown order, e.g.:

- $\mathbb{Z} / N \mathbb{Z}$ with $N=p q$ an RSA modulus, p, q unknown (e.g., generated by some trusted authority),
- Class group of imaginary quadratic order.

Evaluation

With delay parameter T :

$$
\begin{aligned}
f: G & \longrightarrow G \\
x & \longmapsto x^{2^{T}}
\end{aligned}
$$

Conjecturally, fastest algorithm is repeated squaring.

VDFs from groups of unknown order (inspired by Rivest-Shamir-Wagner time-lock puzzle)

Setup

A group of unknown order, e.g.:

- $\mathbb{Z} / N \mathbb{Z}$ with $N=p q$ an RSA modulus, p, q unknown (e.g., generated by some trusted authority),
- Class group of imaginary quadratic order.

Evaluation

With delay parameter T :

$$
\begin{aligned}
f: G & \longrightarrow G \\
x & \longmapsto x^{2^{T}}
\end{aligned}
$$

Conjecturally, fastest algorithm is repeated squaring.

VDFs from groups of unknown order (inspired by Rivest-Shamir-Wagner time-lock puzzle)

Setup

A group of unknown order, e.g.:

- $\mathbb{Z} / N \mathbb{Z}$ with $N=p q$ an RSA modulus, p, q unknown (e.g., generated by some trusted authority),
- Class group of imaginary quadratic order.

Evaluation

With delay parameter T :

$$
\begin{aligned}
f: G & \longrightarrow \\
x & \longmapsto x^{2^{T}}
\end{aligned}
$$

Conjecturally, fastest algorithm is repeated squaring.

Verification

Interactive proofs that $y=f(x)$, (non interactivity via Fiat-Shamir):

Pietrzak '19:

- Proof size $O(\log (T))$,
- Hard to find (non-trivial) $w \in G$ of known order \Rightarrow Proof is sound.

VDFs from groups of unknown order (inspired by Rivest-Shamir-Wagner time-lock puzzle)

Setup

A group of unknown order, e.g.:

- $\mathbb{Z} / N \mathbb{Z}$ with $N=p q$ an RSA modulus, p, q unknown (e.g., generated by some trusted authority),
- Class group of imaginary quadratic order.

Evaluation

With delay parameter T :

$$
\begin{aligned}
f: G & \longrightarrow G \\
x & \longmapsto x^{2^{T}}
\end{aligned}
$$

Conjecturally, fastest algorithm is repeated squaring.

Verification

Interactive proofs that $y=f(x)$, (non interactivity via Fiat-Shamir):

Pietrzak '19:

- Proof size $O(\log (T))$,
- Hard to find (non-trivial) $w \in G$ of known order \Rightarrow Proof is sound.

Wesolowski '19:

- Proof size $O(1)$,
- More emphad hoc security assumption.

Where have I seen this before?

Where have I seen this before?

Isogeny cycles

- Vertices are elliptic curves:

Ordinary,
Supersingular $/ \mathbb{F}_{p}$.

- Edges are horizontal isogenies.

Where have I seen this before?

Isogeny cycles

- Vertices are elliptic curves:

Ordinary,
Supersingular $/ \mathbb{F}_{p}$.

- Edges are horizontal isogenies.
- The class group of $\operatorname{End}(E)$ acts upon the cycle:
isogeny \leftrightarrow ideal
endomorphism \leftrightarrow principalideal
degree \leftrightarrow norm
dual \leftrightarrow complex conjugate
cycle size $\quad \leftrightarrow \quad$ order of the ideal

Where have I seen this before?

Isogeny cycles

- Vertices are elliptic curves:

$$
\begin{array}{lr}
\text { Ordinary, } & \text { Couveignes-Rostovtsev-Stolbunov } \\
\text { Supersingular } / \mathbb{F}_{p} . & \text { CSIDH }
\end{array}
$$

- Edges are horizontal isogenies.
- The class group of $\operatorname{End}(E)$ acts upon the cycle:
isogeny \leftrightarrow ideal
endomorphism \leftrightarrow principal ideal
degree \leftrightarrow norm
dual \leftrightarrow complex conjugate
cycle size $\quad \leftrightarrow \quad$ order of the ideal

Sloo000w isogenies

Setup

With delay parameter T :

- A laaaaaaaaaaaaaaaaaaaaaaaarge isogeny cycle,

Sloo000w isogenies

Setup

With delay parameter T :

- A laaaaaaaaaaaaaaaaaaaaaaaaarge isogeny cycle,
- A starting curve E_{0},
- An isogeny $\phi: E_{0} \rightarrow E_{T}$ of degree 2^{T}.

Sloooo000000000000000000000000000000000000000w isogenies

Setup

With delay parameter T :

- A laaaaaaaaaaaaaaaaaaaaaaaaarge isogeny cycle,
- A starting curve E_{0},
- An isogeny $\phi: E_{0} \rightarrow E_{T}$ of degree 2^{T}.

Evaluation

ϕ is the VDF:

$$
\begin{aligned}
\phi: E_{0}\left(\mathbb{F}_{p}\right) & \longrightarrow E_{T}\left(\mathbb{F}_{p}\right) \\
P & \longmapsto \phi(P)
\end{aligned}
$$

$\stackrel{\bullet}{E}_{T}$

Conjecturally, no faster way than composing degree 2 isogenies.

Sloo000w isogenies

Setup

With delay parameter T :

- A laaaaaaaaaaaaaaaaaaaaaaaaarge isogeny cycle,
- A starting curve E_{0},
- An isogeny $\phi: E_{0} \rightarrow E_{T}$ of degree 2^{T}.

Evaluation

ϕ is the VDF:

$$
\begin{aligned}
\phi: E_{0}\left(\mathbb{F}_{p}\right) & \longrightarrow E_{T}\left(\mathbb{F}_{p}\right) \\
P & \longmapsto \phi(P)
\end{aligned}
$$

How to verify?
E_{T}

Conjecturally, no faster way than composing degree 2 isogenies.

Isogeny <3 Pairing

Theorem

Let $\phi: E \rightarrow E^{\prime}$ be an isogeny and $\hat{\phi}: E^{\prime} \rightarrow E$ its dual. Let e_{N} be the Weil pairing of E and e_{N}^{\prime} that of E^{\prime}. Then

$$
e_{N}(P, \hat{\phi}(Q))=e_{N}^{\prime}(\phi(P), Q),
$$

for any $P \in E[N]$ and $Q \in E^{\prime}[N]$.

Corollary

$$
e_{N}^{\prime}(\phi(P), \phi(Q))=e_{N}(P, Q)^{\operatorname{deg} \phi} .
$$

Refresher: Boneh-Lynn-Shacham (BLS) signatures

Setup: - Elliptic curve E / \mathbb{F}_{p}, s.t $N \mid \# E\left(\mathbb{F}_{p}\right)$ for a large prime N,

- (Weil) pairing $e_{N}: E[N] \times E[N] \rightarrow \mathbb{F}_{p^{k}}$ for some small embedding degree k,
- A decomposition $E[N]=X_{1} \times X_{2}$, with $X_{1}=\langle P\rangle$.
- A hash function $H:\{0,1\}^{*} \rightarrow X_{2}$.

Private key: $s \in \mathbb{Z} / N \mathbb{Z}$.
Public key: $s P$.

$$
\begin{aligned}
\text { Sign: } & m \mapsto s H(m) \\
\text { Verifiy: } & e_{N}(P, s H(m))=e_{N}(s P, H(m))
\end{aligned}
$$

US patent 8,250,367 (Broker, Charles and Lauter 2012)

Signatures from isogenies + pairings

- Replace the secret $[s]: E \rightarrow E$ with an isogeny $\phi: E \rightarrow E^{\prime}$;
- Define decompositions

$$
E[N]=X_{1} \times X_{2}, \quad E^{\prime}[N]=Y_{1} \times Y_{2},
$$

s.t. $\phi\left(X_{1}\right)=Y_{1}$ and $\phi\left(X_{2}\right)=Y_{2}$;

- Define a hash function $H:\{0,1\}^{*} \rightarrow Y_{2}$.

$$
\begin{aligned}
& X_{1} \times Y_{2} \xrightarrow{\phi \times 1} Y_{1} \times Y_{2} \\
& 1 \times \hat{\phi} \mid \\
& \\
& X_{1} \times X_{2} \xrightarrow[e_{N}]{ } \mathbb{F}_{p^{k}} e_{N}^{\prime}
\end{aligned}
$$

Isogeny VDF (principle)

Setup

- Pairing friendly curve E,
- Isogeny $\phi: E \rightarrow E^{\prime}$ of degree ℓ^{T},
- Point $P \in X_{1}$, image $\phi(P) \in Y_{1}$.

Evaluation

Input: random $Q \in Y_{2}$,
Output: $\hat{\phi}(Q) \in X_{2}$.

$$
\begin{aligned}
& \text { Verification } \\
& \qquad e_{N}(P, \hat{\phi}(Q)) \quad \stackrel{?}{=} \quad e_{N}^{\prime}(\phi(P), Q) .
\end{aligned}
$$

Instantiation over \mathbb{F}_{p}

The curves

$\left.\begin{array}{l}\text { - Need a large enough isogeny class; } \\ \text { - Need pairing friendliness; }\end{array}\right\} \Rightarrow$ supersingular curves.

Technicalities

Instantiation over \mathbb{F}_{p}

The curves

$\left.\begin{array}{l}\text { - Need a large enough isogeny class; } \\ \text { - Need pairing friendliness; }\end{array}\right\} \Rightarrow$ supersingular curves.

Technicalities

- Choose $p+1=N \cdot f$,
for degree $\ell=2$ also need $8 \mid f$;

Instantiation over \mathbb{F}_{p}

The curves

- Need a large enough isogeny class;
- Need pairing friendliness;

$$
\} \Rightarrow \text { supersingular curves. }
$$

Technicalities

- Choose $p+1=N \cdot f$,
for degree $\ell=2$ also need $8 \mid f$;
- Choose E / \mathbb{F}_{p} on an ℓ-isogeny cycle

If $\ell=2 \Rightarrow$ choose E with maximal endomorphism ring; Otherwise $\left(\frac{-p}{\ell}\right)=1$.

Instantiation over \mathbb{F}_{p}

The curves

- Need a large enough isogeny class;
- Need pairing friendliness;

$$
\} \Rightarrow \text { supersingular curves. }
$$

Technicalities

- Choose $p+1=N \cdot f$, for degree $\ell=2$ also need $8 \mid f$;
- Choose E / \mathbb{F}_{p} on an ℓ-isogeny cycle

If $\ell=2 \Rightarrow$ choose E with maximal endomorphism ring; Otherwise $\left(\frac{-p}{\ell}\right)=1$.

- There are only two ℓ^{T}-isogenies from E, choose any.

Instantiation over \mathbb{F}_{p}

The curves

- Need a large enough isogeny class;
- Need pairing friendliness;

$$
\} \Rightarrow \text { supersingular curves. }
$$

Technicalities

- Choose $p+1=N \cdot f$, for degree $\ell=2$ also need $8 \mid f$;
- Choose E / \mathbb{F}_{p} on an ℓ-isogeny cycle

If $\ell=2 \Rightarrow$ choose E with maximal endomorphism ring; Otherwise $\left(\frac{-p}{\ell}\right)=1$.

- There are only two ℓ^{T}-isogenies from E, choose any.
- Set $X_{2}=E[N] \cap E\left(\mathbb{F}_{p}\right)$ and X_{1} as the other eigenspace of Frobenius:

Short notation:	$X_{1}=E[(N, \pi+1)]$,	$X_{2}=E[(N, \pi-1)]$.
Similarly:	$Y_{1}=E^{\prime}[(N, \pi+1)]$,	$Y_{2}=E^{\prime}[(N, \pi-1)]$.

Instantiation over $\mathbb{F}_{p^{2}}$

There's nothing special with isogeny cycles

- May as well use isogeny walks in the full supersingular graph (like Charles-Goren-Lauter, SIDH, ...)
- But we still need a canonical decomposition $E[N]=X_{1} \times X_{2}$ \Rightarrow start from E / \mathbb{F}_{p}.

Technicalities

Instantiation over $\mathbb{F}_{p^{2}}$

There's nothing special with isogeny cycles

- May as well use isogeny walks in the full supersingular graph (like Charles-Goren-Lauter, SIDH, ...)
- But we still need a canonical decomposition $E[N]=X_{1} \times X_{2}$ \Rightarrow start from E / \mathbb{F}_{p}.

Technicalities

- $p+1=N \cdot f$, no conditions on (p, ℓ);

Instantiation over $\mathbb{F}_{p^{2}}$

There's nothing special with isogeny cycles

- May as well use isogeny walks in the full supersingular graph (like Charles-Goren-Lauter, SIDH, ...)
- But we still need a canonical decomposition $E[N]=X_{1} \times X_{2}$ \Rightarrow start from E / \mathbb{F}_{p}.

Technicalities

- $p+1=N \cdot f$, no conditions on (p, ℓ);
- There are exponentially many $\boldsymbol{\ell}^{T}$-isogenies, choose any (pseudorandomly);

Instantiation over $\mathbb{F}_{p^{2}}$

There's nothing special with isogeny cycles

- May as well use isogeny walks in the full supersingular graph (like Charles-Goren-Lauter, SIDH, ...)
- But we still need a canonical decomposition $E[N]=X_{1} \times X_{2}$ \Rightarrow start from E / \mathbb{F}_{p}.

Technicalities

- $p+1=N \cdot f$, no conditions on (p, ℓ);
- There are exponentially many ℓ^{T}-isogenies, choose any (pseudorandomly);
- Impossible to hash into $Y_{2}=\phi\left(X_{2}\right)$:

Domain of VDF is all of $E^{\prime}[N]$;
To make the protocol sound we compose $\hat{\phi}$ with the trace of $E / \mathbb{F}_{p^{2}}$.

Comparison

	Wesolowski		Pietrak		Ours	
	RSA	class group	RSA	class group	\mathbb{F}_{p}	$\mathbb{F}_{p^{2}}$
proof size	$O(1)$	$O(1)$	$O(\log (T))$	$O(\log (T))$	-	-
aggregatable	yes	yes	yes	yes	-	-
watermarkable	yes	yes	yes	yes	(yes)	(yes)
perfect soundness	no	no	no	no	yes	yes
long setup	no	no	no	no	yes	yes
trusted setup	yos	no	yes	no	yes	yes
best attack	$L_{N}(1 / 3)$	$L_{N}(1 / 2)$	$L_{N}(1 / 3)$	$L_{N}(1 / 2)$	$L_{p}(1 / 3)$	$L_{p}(1 / 3)$
quantum annoying	no	(yes)	no	(yes)	no	yes

Implementation

- PoC implementation in SageMath (re-implemented Montgomery isogenies);
- $p+1=N \cdot 2^{1244} \cdot 63$, enables time/memory compromise in evaluation.

Protocol	Step	Parameters size $\left(T \approx 2^{16}\right)$	Time	Throughput
\mathbb{F}_{p} graph	Setup	238 kb	-	0.75 isog $/ \mathrm{ms}$
	Evaluation	-	-	0.75 isog $/ \mathrm{ms}$
	Verification	-	0.3 s	-
$\mathbb{F}_{p^{2}}$ graph	Setup	491 kb	-	$0.35 \mathrm{isog} / \mathrm{ms}$
	Evaluation	-	-	0.23 isog $/ \mathrm{ms}$
	Verification	-	4 s	-

Table: Benchmarks (Intel Core i7-8700 @3.20GHz) at 128 bits of security (aggressively optimizing for size).

Security

Attacks

Security goal

Given the isogeny $\phi: E \rightarrow E$, the adversary is allowed poly (T) precomputation.
Later, it is given a random $Q \in Y_{2}$:
its probability of computing $\hat{\phi}(Q)$ in less than " T steps" must be negligible.

Attack avenues:

(1) Speed-up/parallelize isogeny computation;
(2) Solve the pairing equation;
(3) Find isogeny shortcuts.

Attacking the computation?

RSA:

Isogenies:
$\left(\alpha_{1}, \ldots, \alpha_{T}\right.$ depend on the chosen isogeny)
e.g., $\quad \log _{2} N \approx 2048, \quad \log _{2} p \approx 1500$.
$x \longmapsto x^{2} \bmod N$

$$
x \longmapsto x \frac{x \alpha_{i}-1}{x-\alpha_{i}} \bmod p
$$

No speedup? Even with unlimited parallelism? Really?
See Bernstein, Sorenson. Modular exponentiation via the explicit Chinese remainder theorem.

Attacking the pairing

A pairing inversion problem:

$$
e(P, ? ? ?)=e(\phi(P), Q)
$$

Quantum: Broken by Shor's algorithm;
Classical: Subexponential $L_{p}(1 / 3)$ attack.
Note: Solving the equation gives the true value of $\hat{\phi}(Q)$ (perfect soundness)

Computing shortcuts

- Isogeny degree $=\ell^{T} \leftrightarrow$ walk length $=T$;
- e.g., for delay ≈ 1 hour, $T \approx 2^{20}$;

Computing shortcuts

- Isogeny degree $=\ell^{T} \leftrightarrow$ walk length $=T$;
- e.g., for delay ≈ 1 hour, $T \approx 2^{20}$;
- Typically much larger than graph diameter $\left(=O(\log p) \approx 2^{10}\right)$.
- (which isogeny graph is meant depends on the variant)

Computing shortcuts

- Isogeny degree $=\ell^{T} \leftrightarrow$ walk length $=T$;
- e.g., for delay ≈ 1 hour, $T \approx 2^{20}$;
- Typically much larger than graph diameter $\left(=O(\log p) \approx 2^{10}\right)$.
- (which isogeny graph is meant depends on the variant)
- Goal: find a shortcut, i.e., a shorter walk.

$\operatorname{End}(E)$ gives shortcuts

\mathbb{F}_{p} case

- $\operatorname{End}_{\mathbb{F}_{p}}(E) \subset \mathbb{Q}(\sqrt{-p})$: the class group $\mathrm{Cl}(-4 p)$ acts on the set of supersingular curves $/ \mathbb{F}_{p}$;
- Structure of $\mathrm{Cl}(-4 p)$
§
relations between ideal classes
I shortcuts in the graph.
see CSI-FiSh signatures
(Beullens-Kleinjung-Vercauteren); akin to attack on class group VDF.
- Some additional work to find endomorphism ω such that $\omega \circ \hat{\psi}(Q)=\hat{\phi}(Q)$.

$\operatorname{End}(E)$ gives shortcuts

\mathbb{F}_{p} case

- $\operatorname{End}_{\mathbb{F}_{p}}(E) \subset \mathbb{Q}(\sqrt{-p})$: the class group $\mathrm{Cl}(-4 p)$ acts on the set of supersingular curves $/ \mathbb{F}_{p}$;
- Structure of $\mathrm{Cl}(-4 p)$

I
relations between ideal classes
I shortcuts in the graph.
see CSI-FiSh signatures (Beullens-Kleinjung-Vercauteren); akin to attack on class group VDF.

- Some additional work to find endomorphism ω such that $\omega \circ \hat{\psi}(Q)=\hat{\phi}(Q)$.

General case (both \mathbb{F}_{p} and $\mathbb{F}_{p^{2}}$)

- $\operatorname{End}(E)$ isomorphic to an order in a quaternion algebra;
- Structure of $\operatorname{End}(E)\left(\right.$ or $\left.\operatorname{End}\left(E^{\prime}\right)\right)$
§
shortcuts (through $\mathbb{F}_{p^{2}}$).
Related to attacks on the Charles-Goren-Lauter hash function.
- Additional work to find $\omega \in \operatorname{End}(E)$.

$\operatorname{End}(E)$ gives shortcuts

\mathbb{F}_{p} case

- $\operatorname{End}_{\mathbb{F}_{p}}(E) \subset \mathbb{Q}(\sqrt{-p})$: the class group $\mathrm{Cl}(-4 p)$ acts on the set of supersingular curves $/ \mathbb{F}_{p}$;
- Structure of $\mathrm{Cl}(-4 p)$

I
relations between ideal classes
I shortcuts in the graph.
see CSI-FiSh signatures (Beullens-Kleinjung-Vercauteren); akin to attack on class group VDF.

- Some additional work to find endomorphism ω such that $\omega \circ \hat{\psi}(Q)=\hat{\phi}(Q)$.

General case (both \mathbb{F}_{p} and $\mathbb{F}_{p^{2}}$)

- $\operatorname{End}(E)$ isomorphic to an order in a quaternion algebra;
- Structure of $\operatorname{End}(E)\left(\right.$ or $\left.\operatorname{End}\left(E^{\prime}\right)\right)$ § shortcuts (through $\mathbb{F}_{p^{2}}$).

Related to attacks on the Charles-Goren-Lauter hash function.

- Additional work to find $\omega \in \operatorname{End}(E)$.

WE HAVE A PROBLEM!

No known way to construct supersingular curves without knowledge of $\operatorname{End}(E)$.

Only known fix: Trusted setup.

Trusted setup
 $$
y^{2}=x^{3}+x
$$

- Start from a well known supersingular curve,

Trusted setup

- Start from a well known supersingular curve,
- Do a random walk,

Trusted setup

$$
y^{2}=x^{3}+x
$$

- Start from a well known supersingular curve,
- Do a random walk,
- Forget it.

Trusted setup

$$
y^{2}=x^{3}+x
$$

- Start from a well known supersingular curve,
- Do a random walk,
- Forget it.

	Classical		Quantum	
	\mathbb{F}_{p} graph	$\mathbb{F}_{p^{2}}$ graph	\mathbb{F}_{p} graph	$\mathbb{F}_{p^{2}}$ graph
Computing shortcuts	$L_{p}(1 / 2)$	$O(\sqrt{p})$	$\operatorname{poly} \log (p)$	$O(\sqrt[4]{p})$
Pairing inversion	$L_{p}(1 / 3)$	$L_{p}(1 / 3)$	$\operatorname{polylog}(p)$	$\operatorname{polylog}(p)$

Quantum annoyance:

- Computing shortcuts in $\mathbb{F}_{p^{2}}$ is quantumly hard;
- Pairing inversion attacks must be run online, useless if Shor's algorithm takes much longer than target delay.

Distributed trusted setups

Mitigate trusted setup woes by distributing trust:

- Participant i performs a random walk (in \mathbb{F}_{p}),

Distributed trusted setups

Mitigate trusted setup woes by distributing trust:

- Participant i performs a random walk (in \mathbb{F}_{p}),
- Publishes a proof of isogeny knowledge,

$$
\cdot E_{1}^{\pi_{1}} \quad y^{2}=x^{3}+x
$$

Distributed trusted setups

Mitigate trusted setup woes by distributing trust:

- Participant i performs a random walk (in \mathbb{F}_{p}),
- Publishes a proof of isogeny knowledge,
- Repeat.

Distributed trusted setups

```
            \pi
\pi
- E
```


Distributed trusted setups

Mitigate trusted setup woes by distributing trust:

- Participant i performs a random walk (in \mathbb{F}_{p}),
- Publishes a proof of isogeny knowledge,
- Repeat.

Distributed trusted setups

Mitigate trusted setup woes by distributing trust:

- Participant i performs a random walk (in \mathbb{F}_{p}),
- Publishes a proof of isogeny knowledge,
- Repeat.
- E_{3}

Distributed trusted setups

Mitigate trusted setup woes by distributing trust:

- Participant i performs a random walk (in \mathbb{F}_{p}),
- Publishes a proof of isogeny knowledge,
- Repeat.

Proof options:

- Generic ZK proofs,
- Isogeny ZK proofs (SeaSign),
- Pairing proofs (not ZK!):

$$
\begin{gathered}
P, Q=\mathcal{H}\left(E_{i}, E_{i+1}\right) \\
e_{i}\left(P, \hat{\phi}_{i}(Q)\right)=e_{i+1}\left(\phi_{i}(P), Q\right)
\end{gathered}
$$

Properties: asynchronous, robust against $n-1$ coalition, verification scales linearly, updatable, ...

Beyond VDFs

Mannheim-F Gernsheim	ich	17	Train is	cancelled
Köln Hbf Berlin Hbf		$\begin{aligned} & 7 \\ & 9 \end{aligned}$	$\begin{aligned} & \text { Train is } \\ & \text { Train is } \end{aligned}$	cancelled
Passau Hbf Siegen		$\begin{array}{r} 6 \\ 16 \end{array}$	Train	cancelled
Saarbrücken Fulda	Hb	8	Train is	cancell
Bruxelles-Mic Hanau Hbf		$\begin{array}{r} 19 \\ 5 \end{array}$	$\begin{aligned} & \text { Aujour } \\ & \text { ai } 5 \text { - } \end{aligned}$	
r DB-Zugverkehr beeinträchtigt. Bitte id informieren Sie sich auch im Internet				

Watermarking

Goal: reward evaluator for its effort.
Watermarking: issue proof of evaluation tied to evaluator identity

Secret key: scalar $s \in \mathbb{Z} / N \mathbb{Z}$,
Public key: $s \phi(P) \in E^{\prime}$ (+ proof of exponent knowledge),
Proof of work: $s \hat{\phi}_{1}(Q) \in E_{\text {mid }}$,
Verification: $e_{\text {mid }}\left(\phi_{2}(P), s \hat{\phi}_{1}(Q)\right)=e^{\prime}(s \phi(P), Q)$.
Properties: blind (can be checked before the computation is complete).

Encryption to the future (time-locks)

Goal: encrypt now, decryption only possible after delay.
Applications: auctions, voting, ...
Idea: start from Boneh-Franklin IBE, just add isogenies ${ }^{\text {TM }}$.

Bidder

> samples random $s \in \mathbb{Z} / N \mathbb{Z}$ computes $k=e(\phi(P), Q)^{s}$ encrypts offer $o_{k}=\operatorname{Enc}_{k}(o)$
> sends $\left(o_{k}, s P\right) \longrightarrow$

Auctioneer

Publishes auction key $Q=\mathcal{H}($ sid $)$ starts evaluating $\hat{\phi}(Q)$

$$
\begin{gathered}
\text { computes } k=e(s P, \hat{\phi}(Q)) \\
\text { decrypts } o_{k}
\end{gathered}
$$

Open questions

- Understand the impact of large memory requirements in evaluation; is a time/memory trade-off reasonable?

Open questions

- Understand the impact of large memory requirements in evaluation; is a time/memory trade-off reasonable?
- Remove trusted setup:
- Hash into the supersingular set, or
- Construct ordinary pairing friendly curves with large discriminant.

Open questions

- Understand the impact of large memory requirements in evaluation; is a time/memory trade-off reasonable?
- Remove trusted setup:
- Hash into the supersingular set, or
- Construct ordinary pairing friendly curves with large discriminant.
- Explore more advanced pairing+delay constructions.

Open questions

- Understand the impact of large memory requirements in evaluation; is a time/memory trade-off reasonable?
- Remove trusted setup:
- Hash into the supersingular set, or
- Construct ordinary pairing friendly curves with large discriminant.
- Explore more advanced pairing+delay constructions.
- Spend millions on dedicated hardware for 2-isogenies.

Open questions

- Understand the impact of large memory requirements in evaluation; is a time/memory trade-off reasonable?
- Remove trusted setup:
- Hash into the supersingular set, or
- Construct ordinary pairing friendly curves with large discriminant.
- Explore more advanced pairing+delay constructions.
- Spend millions on dedicated hardware for 2-isogenies.

Just Add Isogenies ${ }^{\text {TM }}$!

Thank you

https://defeo.lu/

- @luca_defeo

