
Verifiable Delay Functions and More from Isogenies and Pairings

Luca De Feo

based on joint work with J. Burdges, S. Masson, C. Petit, A. Sanso
IBM Research Zürich

December 4, 2019, ECC, Bochum

Slides online at https://defeo.lu/docet

https://defeo.lu/docet

Distributed lottery

Participants A, B, . . . , Zwant to agree on a randomwinning ticket.

Flawed protocol
Each participant x broadcasts a random string sx ;
Winning ticket isH (sA; : : : ; sZ).

Cheating participant Zwaits to see all other strings, then brute-forces sZ to win lottery.

Fixes
Make the hash function sloooooooooooooooooooooooooooow;
I e.g., participants have 10 minutes to submit sx ,
I outcome will be known a�er 20minutes.

Make it possible to verifyw = H (sA; : : : ; sZ) fast.

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 2 / 28

https://defeo.lu/docet

Distributed lottery

Participants A, B, . . . , Zwant to agree on a randomwinning ticket.

Flawed protocol
Each participant x broadcasts a random string sx ;
Winning ticket isH (sA; : : : ; sZ).

Cheating participant Zwaits to see all other strings, then brute-forces sZ to win lottery.

Fixes
Make the hash function sloooooooooooooooooooooooooooow;
I e.g., participants have 10 minutes to submit sx ,
I outcome will be known a�er 20minutes.

Make it possible to verifyw = H (sA; : : : ; sZ) fast.

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 2 / 28

https://defeo.lu/docet

Distributed lottery

Participants A, B, . . . , Zwant to agree on a randomwinning ticket.

Flawed protocol
Each participant x broadcasts a random string sx ;
Winning ticket isH (sA; : : : ; sZ).

Cheating participant Zwaits to see all other strings, then brute-forces sZ to win lottery.

Fixes
Make the hash function sloooooooooooooooooooooooooooow;
I e.g., participants have 10 minutes to submit sx ,
I outcome will be known a�er 20 minutes.

Make it possible to verifyw = H (sA; : : : ; sZ) fast.

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 2 / 28

https://defeo.lu/docet

Distributed lottery

Participants A, B, . . . , Zwant to agree on a randomwinning ticket.

Flawed protocol
Each participant x broadcasts a random string sx ;
Winning ticket isH (sA; : : : ; sZ).

Cheating participant Zwaits to see all other strings, then brute-forces sZ to win lottery.

Fixes
Make the hash function sloooooooooooooooooooooooooooow;
I e.g., participants have 10 minutes to submit sx ,
I outcome will be known a�er 20 minutes.

Make it possible to verifyw = H (sA; : : : ; sZ) fast.

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 2 / 28

https://defeo.lu/docet

Verifiable Delay Functions (Boneh, Bonneau, Bünz, Fisch 2018)

Wanted
Function (family) f : X ! Y s.t.:

Evaluating f (x) takes long time:
I uniformly long time,
I on almost all random inputs x ,
I even a�er having seenmany values of f (x 0),
I even given massive number of processors;

Verifying y = f (x) is e�icient:
I ideally, exponential separation between evaluation and verification.

Exercise

Think of a function you like with these properties

Got it?

You’re probably wrong!

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 3 / 28

https://defeo.lu/docet

Verifiable Delay Functions (Boneh, Bonneau, Bünz, Fisch 2018)

Wanted
Function (family) f : X ! Y s.t.:

Evaluating f (x) takes long time:
I uniformly long time,
I on almost all random inputs x ,
I even a�er having seenmany values of f (x 0),
I even given massive number of processors;

Verifying y = f (x) is e�icient:
I ideally, exponential separation between evaluation and verification.

Exercise

Think of a function you like with these properties

Got it?

You’re probably wrong!

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 3 / 28

https://defeo.lu/docet

Verifiable Delay Functions (Boneh, Bonneau, Bünz, Fisch 2018)

Wanted
Function (family) f : X ! Y s.t.:

Evaluating f (x) takes long time:
I uniformly long time,
I on almost all random inputs x ,
I even a�er having seenmany values of f (x 0),
I even given massive number of processors;

Verifying y = f (x) is e�icient:
I ideally, exponential separation between evaluation and verification.

Exercise

Think of a function you like with these properties

Got it?

You’re probably wrong!

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 3 / 28

https://defeo.lu/docet

Verifiable Delay Functions (Boneh, Bonneau, Bünz, Fisch 2018)

Wanted
Function (family) f : X ! Y s.t.:

Evaluating f (x) takes long time:
I uniformly long time,
I on almost all random inputs x ,
I even a�er having seenmany values of f (x 0),
I even given massive number of processors;

Verifying y = f (x) is e�icient:
I ideally, exponential separation between evaluation and verification.

Exercise

Think of a function you like with these properties

Got it?

You’re probably wrong!

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 3 / 28

https://defeo.lu/docet

Verifiable Delay Functions (Boneh, Bonneau, Bünz, Fisch 2018)

Wanted
Function (family) f : X ! Y s.t.:

Evaluating f (x) takes long time:
I uniformly long time,
I on almost all random inputs x ,
I even a�er having seenmany values of f (x 0),
I even given massive number of processors;

Verifying y = f (x) is e�icient:
I ideally, exponential separation between evaluation and verification.

Exercise

Think of a function you like with these properties

Got it?

You’re probably wrong!

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 3 / 28

https://defeo.lu/docet

Sequentiality

Ideal functionality:

y = f (x) = H (H (� � � (H (x))))| {z }
T times

Sequential assuming hash output “unpredictability”,
but how do you verify? (you’re not allowed to say “SNARKs”)

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 4 / 28

https://defeo.lu/docet

VDFs from groups of unknown order (inspired by Rivest–Shamir–Wagner time-lock puzzle)

Setup
A group of unknown order, e.g.:

Z=NZwithN = pq an RSAmodulus, p; q unknown
(e.g., generated by some trusted authority),
Class group of imaginary quadratic order.

Evaluation
With delay parameterT :

f : G �! G

x 7�! x 2T

Conjecturally, fastest algorithm is repeated squaring.

x

x 2
x 4

x 2T

2T mod '(N)

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 5 / 28

https://defeo.lu/docet

VDFs from groups of unknown order (inspired by Rivest–Shamir–Wagner time-lock puzzle)

Setup
A group of unknown order, e.g.:

Z=NZwithN = pq an RSAmodulus, p; q unknown
(e.g., generated by some trusted authority),
Class group of imaginary quadratic order.

Evaluation
With delay parameterT :

f : G �! G

x 7�! x 2T

Conjecturally, fastest algorithm is repeated squaring.

x
x 2

x 4

x 2T

2T mod '(N)

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 5 / 28

https://defeo.lu/docet

VDFs from groups of unknown order (inspired by Rivest–Shamir–Wagner time-lock puzzle)

Setup
A group of unknown order, e.g.:

Z=NZwithN = pq an RSAmodulus, p; q unknown
(e.g., generated by some trusted authority),
Class group of imaginary quadratic order.

Evaluation
With delay parameterT :

f : G �! G

x 7�! x 2T

Conjecturally, fastest algorithm is repeated squaring.

x
x 2

x 4

x 2T

2T mod '(N)

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 5 / 28

https://defeo.lu/docet

VDFs from groups of unknown order (inspired by Rivest–Shamir–Wagner time-lock puzzle)

Setup
A group of unknown order, e.g.:

Z=NZwithN = pq an RSAmodulus, p; q unknown
(e.g., generated by some trusted authority),
Class group of imaginary quadratic order.

Evaluation
With delay parameterT :

f : G �! G

x 7�! x 2T

Conjecturally, fastest algorithm is repeated squaring.

x
x 2

x 4

x 2T

2T mod '(N)

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 5 / 28

https://defeo.lu/docet

VDFs from groups of unknown order (inspired by Rivest–Shamir–Wagner time-lock puzzle)

Setup
A group of unknown order, e.g.:

Z=NZwithN = pq an RSAmodulus, p; q unknown
(e.g., generated by some trusted authority),
Class group of imaginary quadratic order.

Evaluation
With delay parameterT :

f : G �! G

x 7�! x 2T

Conjecturally, fastest algorithm is repeated squaring.

x
x 2

x 4

x 2T

2T mod '(N)

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 5 / 28

https://defeo.lu/docet

VDFs from groups of unknown order (inspired by Rivest–Shamir–Wagner time-lock puzzle)

Setup
A group of unknown order, e.g.:

Z=NZwithN = pq an RSAmodulus, p; q unknown
(e.g., generated by some trusted authority),
Class group of imaginary quadratic order.

Evaluation
With delay parameterT :

f : G �! G

x 7�! x 2T

Conjecturally, fastest algorithm is repeated squaring.

Verification
Interactive proofs that y = f (x),
(non interactivity via Fiat-Shamir):

Pietrzak ’19:
Proof sizeO(log(T)),
Hard to find (non-trivial)
w 2 G of known order
) Proof is sound.

Wesolowski ’19:
Proof sizeO(1),
More emphad hoc security
assumption.

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 5 / 28

https://defeo.lu/docet

VDFs from groups of unknown order (inspired by Rivest–Shamir–Wagner time-lock puzzle)

Setup
A group of unknown order, e.g.:

Z=NZwithN = pq an RSAmodulus, p; q unknown
(e.g., generated by some trusted authority),
Class group of imaginary quadratic order.

Evaluation
With delay parameterT :

f : G �! G

x 7�! x 2T

Conjecturally, fastest algorithm is repeated squaring.

Verification
Interactive proofs that y = f (x),
(non interactivity via Fiat-Shamir):
Pietrzak ’19:

Proof sizeO(log(T)),
Hard to find (non-trivial)
w 2 G of known order
) Proof is sound.

Wesolowski ’19:
Proof sizeO(1),
More emphad hoc security
assumption.

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 5 / 28

https://defeo.lu/docet

VDFs from groups of unknown order (inspired by Rivest–Shamir–Wagner time-lock puzzle)

Setup
A group of unknown order, e.g.:

Z=NZwithN = pq an RSAmodulus, p; q unknown
(e.g., generated by some trusted authority),
Class group of imaginary quadratic order.

Evaluation
With delay parameterT :

f : G �! G

x 7�! x 2T

Conjecturally, fastest algorithm is repeated squaring.

Verification
Interactive proofs that y = f (x),
(non interactivity via Fiat-Shamir):
Pietrzak ’19:

Proof sizeO(log(T)),
Hard to find (non-trivial)
w 2 G of known order
) Proof is sound.

Wesolowski ’19:
Proof sizeO(1),
More emphad hoc security
assumption.

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 5 / 28

https://defeo.lu/docet

Where have I seen this before?

Isogeny cycles
Vertices are elliptic curves:
I Ordinary,

Couveignes–Rostovtsev–Stolbunov

I Supersingular =Fp .

CSIDH

Edges are horizontal isogenies.

The class group ofEnd(E) acts upon the cycle:
isogeny $ ideal

endomorphism $ principal ideal
degree $ norm
dual $ complex conjugate

cycle size $ order of the ideal

x 20

x 21

x 22
x 23x 24

x 25

x 26

x 27

x 28

x 29

x 210

x 211

x 212
x 213 x 214

x 215

x 216

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 6 / 28

https://defeo.lu/docet

Where have I seen this before?

Isogeny cycles
Vertices are elliptic curves:
I Ordinary,

Couveignes–Rostovtsev–Stolbunov

I Supersingular =Fp .

CSIDH

Edges are horizontal isogenies.

The class group ofEnd(E) acts upon the cycle:
isogeny $ ideal

endomorphism $ principal ideal
degree $ norm
dual $ complex conjugate

cycle size $ order of the ideal

E0

E1

E2

E3
E4E5

E6

E7

E8

E9

E10

E11
E12 E13

E14

E15

E16

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 6 / 28

https://defeo.lu/docet

Where have I seen this before?

Isogeny cycles
Vertices are elliptic curves:
I Ordinary,

Couveignes–Rostovtsev–Stolbunov

I Supersingular =Fp .

CSIDH

Edges are horizontal isogenies.
The class group ofEnd(E) acts upon the cycle:

isogeny $ ideal
endomorphism $ principal ideal

degree $ norm
dual $ complex conjugate

cycle size $ order of the ideal

E0

E1

E2

E3
E4E5

E6

E7

E8

E9

E10

E11
E12 E13

E14

E15

E16

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 6 / 28

https://defeo.lu/docet

Where have I seen this before?

Isogeny cycles
Vertices are elliptic curves:
I Ordinary, Couveignes–Rostovtsev–Stolbunov
I Supersingular =Fp . CSIDH

Edges are horizontal isogenies.
The class group ofEnd(E) acts upon the cycle:

isogeny $ ideal
endomorphism $ principal ideal

degree $ norm
dual $ complex conjugate

cycle size $ order of the ideal

E0

E1

E2

E3
E4E5

E6

E7

E8

E9

E10

E11
E12 E13

E14

E15

E16

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 6 / 28

https://defeo.lu/docet

Slooow isogenies
Setup
With delay parameterT :

A laaaaaaaaaaaaaaaaaaaaaaaarge isogeny cycle,

A starting curveE0,
An isogeny � : E0 ! ET of degree 2T .

Evaluation
� is the VDF:

� : E0(Fp) �! ET (Fp)

P 7�! �(P)

Conjecturally, no faster way than composing degree 2
isogenies.

E0

E1

E2

ET

How to verify?

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 7 / 28

https://defeo.lu/docet

Slooow isogenies
Setup
With delay parameterT :

A laaaaaaaaaaaaaaaaaaaaaaaarge isogeny cycle,
A starting curveE0,
An isogeny � : E0 ! ET of degree 2T .

Evaluation
� is the VDF:

� : E0(Fp) �! ET (Fp)

P 7�! �(P)

Conjecturally, no faster way than composing degree 2
isogenies.

E0

E1

E2

ET

How to verify?

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 7 / 28

https://defeo.lu/docet

Slooow isogenies
Setup
With delay parameterT :

A laaaaaaaaaaaaaaaaaaaaaaaarge isogeny cycle,
A starting curveE0,
An isogeny � : E0 ! ET of degree 2T .

Evaluation
� is the VDF:

� : E0(Fp) �! ET (Fp)

P 7�! �(P)

Conjecturally, no faster way than composing degree 2
isogenies.

E0

E1

E2

ET

How to verify?

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 7 / 28

https://defeo.lu/docet

Slooow isogenies
Setup
With delay parameterT :

A laaaaaaaaaaaaaaaaaaaaaaaarge isogeny cycle,
A starting curveE0,
An isogeny � : E0 ! ET of degree 2T .

Evaluation
� is the VDF:

� : E0(Fp) �! ET (Fp)

P 7�! �(P)

Conjecturally, no faster way than composing degree 2
isogenies.

E0

E1

E2

ET

How to verify?

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 7 / 28

https://defeo.lu/docet

Isogeny <3 Pairing

Theorem
Let � : E ! E 0 be an isogeny and �̂ : E 0 ! E its dual. Let eN be the Weil pairing ofE and e 0

N
that ofE 0. Then

eN (P ; �̂(Q)) = e 0

N (�(P);Q);

for anyP 2 E [N] andQ 2 E 0[N].

Corollary

e 0

N (�(P); �(Q)) = eN (P ;Q)deg �:

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 8 / 28

https://defeo.lu/docet

Refresher: Boneh–Lynn–Shacham (BLS) signatures

Setup: Elliptic curveE=Fp , s.tN j#E(Fp) for a large primeN ,
(Weil) pairing eN : E [N]�E [N]! Fpk for some small embedding degree k ,
A decompositionE [N] = X1 �X2, withX1 = hPi.
A hash functionH : f0; 1g� ! X2.

Private key: s 2 Z=NZ.
Public key: sP .

Sign: m 7! sH (m).
Verifiy: eN (P ; sH (m)) = eN (sP ;H (m)).

X1 �X2 X1 �X2

X1 �X2 Fpk

[s]� 1

1� [s] eN

eN

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 9 / 28

https://defeo.lu/docet

US patent 8,250,367 (Broker, Charles and Lauter 2012)

Signatures from isogenies + pairings
Replace the secret [s] : E ! E with an isogeny � : E ! E 0;
Define decompositions

E [N] = X1 �X2; E 0[N] = Y1 �Y2;

s.t. �(X1) = Y1 and �(X2) = Y2;
Define a hash functionH : f0; 1g� ! Y2.

X1 �Y2 Y1 �Y2

X1 �X2 Fpk

�� 1

1� �̂ e 0N

eN

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 10 / 28

https://defeo.lu/docet

Isogeny VDF (principle)

Setup
Pairing friendly curveE ,
Isogeny � : E ! E 0 of degree `T ,
PointP 2 X1, image �(P) 2 Y1.

Evaluation
Input: randomQ 2 Y2,

Output: �̂(Q) 2 X2.

Verification

eN (P ; �̂(Q))
?
= e 0

N (�(P);Q):

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 11 / 28

https://defeo.lu/docet

Instantiation over Fp

The curves

Need a large enough isogeny class;
Need pairing friendliness;

)
) supersingular curves.

Technicalities

Choose p + 1 = N � f ,
I for degree ` = 2 also need 8jf ;

ChooseE=Fp on an `-isogeny cycle
I If ` = 2) chooseE with maximal endomorphism ring;
I Otherwise

�
�p
`

�
= 1.

There are only two `T -isogenies fromE , choose any.
SetX2 = E [N] \ E(Fp) andX1 as the other eigenspace of Frobenius:
I Short notation: X1 = E [(N ; � + 1)]; X2 = E [(N ; � � 1)]:
I Similarly: Y1 = E 0[(N ; � + 1)]; Y2 = E 0[(N ; � � 1)]:

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 12 / 28

https://defeo.lu/docet

Instantiation over Fp

The curves

Need a large enough isogeny class;
Need pairing friendliness;

)
) supersingular curves.

Technicalities
Choose p + 1 = N � f ,
I for degree ` = 2 also need 8jf ;

ChooseE=Fp on an `-isogeny cycle
I If ` = 2) chooseE with maximal endomorphism ring;
I Otherwise

�
�p
`

�
= 1.

There are only two `T -isogenies fromE , choose any.
SetX2 = E [N] \ E(Fp) andX1 as the other eigenspace of Frobenius:
I Short notation: X1 = E [(N ; � + 1)]; X2 = E [(N ; � � 1)]:
I Similarly: Y1 = E 0[(N ; � + 1)]; Y2 = E 0[(N ; � � 1)]:

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 12 / 28

https://defeo.lu/docet

Instantiation over Fp

The curves

Need a large enough isogeny class;
Need pairing friendliness;

)
) supersingular curves.

Technicalities
Choose p + 1 = N � f ,
I for degree ` = 2 also need 8jf ;

ChooseE=Fp on an `-isogeny cycle
I If ` = 2) chooseE with maximal endomorphism ring;
I Otherwise

�
�p
`

�
= 1.

There are only two `T -isogenies fromE , choose any.
SetX2 = E [N] \ E(Fp) andX1 as the other eigenspace of Frobenius:
I Short notation: X1 = E [(N ; � + 1)]; X2 = E [(N ; � � 1)]:
I Similarly: Y1 = E 0[(N ; � + 1)]; Y2 = E 0[(N ; � � 1)]:

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 12 / 28

https://defeo.lu/docet

Instantiation over Fp

The curves

Need a large enough isogeny class;
Need pairing friendliness;

)
) supersingular curves.

Technicalities
Choose p + 1 = N � f ,
I for degree ` = 2 also need 8jf ;

ChooseE=Fp on an `-isogeny cycle
I If ` = 2) chooseE with maximal endomorphism ring;
I Otherwise

�
�p
`

�
= 1.

There are only two `T -isogenies fromE , choose any.

SetX2 = E [N] \ E(Fp) andX1 as the other eigenspace of Frobenius:
I Short notation: X1 = E [(N ; � + 1)]; X2 = E [(N ; � � 1)]:
I Similarly: Y1 = E 0[(N ; � + 1)]; Y2 = E 0[(N ; � � 1)]:

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 12 / 28

https://defeo.lu/docet

Instantiation over Fp

The curves

Need a large enough isogeny class;
Need pairing friendliness;

)
) supersingular curves.

Technicalities
Choose p + 1 = N � f ,
I for degree ` = 2 also need 8jf ;

ChooseE=Fp on an `-isogeny cycle
I If ` = 2) chooseE with maximal endomorphism ring;
I Otherwise

�
�p
`

�
= 1.

There are only two `T -isogenies fromE , choose any.
SetX2 = E [N] \ E(Fp) andX1 as the other eigenspace of Frobenius:
I Short notation: X1 = E [(N ; � + 1)]; X2 = E [(N ; � � 1)]:
I Similarly: Y1 = E 0[(N ; � + 1)]; Y2 = E 0[(N ; � � 1)]:

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 12 / 28

https://defeo.lu/docet

Instantiation over Fp2

There’s nothing special with isogeny cycles
May as well use isogeny walks in the full supersingular graph
(like Charles–Goren–Lauter, SIDH, . . .)
But we still need a canonical decompositionE [N] = X1 �X2
) start fromE=Fp .

Technicalities

p + 1 = N � f , no conditions on (p; `);
There are exponentially many `T -isogenies, choose any (pseudorandomly);
Impossible to hash intoY2 = �(X2):
I Domain of VDF is all ofE 0[N];
I Tomake the protocol sound we compose �̂with the trace ofE=Fp2 .

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 13 / 28

https://defeo.lu/docet

Instantiation over Fp2

There’s nothing special with isogeny cycles
May as well use isogeny walks in the full supersingular graph
(like Charles–Goren–Lauter, SIDH, . . .)
But we still need a canonical decompositionE [N] = X1 �X2
) start fromE=Fp .

Technicalities
p + 1 = N � f , no conditions on (p; `);

There are exponentially many `T -isogenies, choose any (pseudorandomly);
Impossible to hash intoY2 = �(X2):
I Domain of VDF is all ofE 0[N];
I Tomake the protocol sound we compose �̂with the trace ofE=Fp2 .

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 13 / 28

https://defeo.lu/docet

Instantiation over Fp2

There’s nothing special with isogeny cycles
May as well use isogeny walks in the full supersingular graph
(like Charles–Goren–Lauter, SIDH, . . .)
But we still need a canonical decompositionE [N] = X1 �X2
) start fromE=Fp .

Technicalities
p + 1 = N � f , no conditions on (p; `);
There are exponentially many `T -isogenies, choose any (pseudorandomly);

Impossible to hash intoY2 = �(X2):
I Domain of VDF is all ofE 0[N];
I Tomake the protocol sound we compose �̂with the trace ofE=Fp2 .

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 13 / 28

https://defeo.lu/docet

Instantiation over Fp2

There’s nothing special with isogeny cycles
May as well use isogeny walks in the full supersingular graph
(like Charles–Goren–Lauter, SIDH, . . .)
But we still need a canonical decompositionE [N] = X1 �X2
) start fromE=Fp .

Technicalities
p + 1 = N � f , no conditions on (p; `);
There are exponentially many `T -isogenies, choose any (pseudorandomly);
Impossible to hash intoY2 = �(X2):
I Domain of VDF is all ofE 0[N];
I Tomake the protocol sound we compose �̂with the trace ofE=Fp2 .

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 13 / 28

https://defeo.lu/docet

Comparison

Wesolowski Pietrzak Ours
RSA class group RSA class group Fp Fp2

proof size O(1) O(1) O(log(T)) O(log(T)) — —
aggregatable yes yes yes yes — —
watermarkable yes yes yes yes (yes) (yes)
perfect soundness no no no no yes yes
long setup no no no no yes yes
trusted setup yes no yes no yes yes
best attack LN (1=3) LN (1=2) LN (1=3) LN (1=2) Lp(1=3) Lp(1=3)
quantum annoying no (yes) no (yes) no yes

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 14 / 28

https://defeo.lu/docet

Implementation

PoC implementation in SageMath (re-implemented Montgomery isogenies);
p + 1 = N � 21244 � 63, enables time/memory compromise in evaluation.

Protocol Step Parameters size (T � 216) Time Throughput

Fp graph
Setup 238 kb — 0.75 isog/ms

Evaluation — — 0.75 isog/ms
Verification — 0:3 s —

Fp2 graph
Setup 491 kb — 0.35 isog/ms

Evaluation — — 0.23 isog/ms
Verification — 4 s —

Table: Benchmarks (Intel Core i7-8700@3.20GHz) at 128 bits of security (aggressively optimizing for size).

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 15 / 28

https://defeo.lu/docet

Security

Attacks

Security goal
Given the isogeny � : E ! E , the adversary is allowed poly(T) precomputation.

Later, it is given a randomQ 2 Y2:
its probability of computing �̂(Q) in less than “T steps” must be negligible.

Attack avenues:
1 Speed-up/parallelize isogeny computation;
2 Solve the pairing equation;
3 Find isogeny shortcuts.

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 17 / 28

https://defeo.lu/docet

Attacking the computation?

RSA: x 7�! x 2 mod N

Isogenies: x 7�! x
x�i � 1
x � �i

mod p

(�1; : : : ; �T depend on the chosen isogeny)

e.g., log2 N � 2048; log2 p � 1500.

No speedup? Even with unlimited parallelism? Really?

See Bernstein, Sorenson. Modular exponentiation via the explicit Chinese remainder
theorem.

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 18 / 28

https://defeo.lu/docet

Attacking the pairing

A pairing inversion problem:

e(P ; ???) = e(�(P);Q)

Quantum: Broken by Shor’s algorithm;
Classical: SubexponentialLp(1=3) attack.

Note: Solving the equation gives the true value of �̂(Q) (perfect soundness)

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 19 / 28

https://defeo.lu/docet

Computing shortcuts

Isogeny degree= `T $walk length= T ;
I e.g., for delay� 1 hour,T � 220;

I Typically much larger than graph
diameter (= O(log p) � 210).

I (which isogeny graph is meant depends
on the variant)

Goal: find a shortcut, i.e., a shorter walk.

E

E 0

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 20 / 28

https://defeo.lu/docet

Computing shortcuts

Isogeny degree= `T $walk length= T ;
I e.g., for delay� 1 hour,T � 220;
I Typically much larger than graph
diameter (= O(log p) � 210).

I (which isogeny graph is meant depends
on the variant)

Goal: find a shortcut, i.e., a shorter walk.

E

E 0

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 20 / 28

https://defeo.lu/docet

Computing shortcuts

Isogeny degree= `T $walk length= T ;
I e.g., for delay� 1 hour,T � 220;
I Typically much larger than graph
diameter (= O(log p) � 210).

I (which isogeny graph is meant depends
on the variant)

Goal: find a shortcut, i.e., a shorter walk.

E

E 0

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 20 / 28

https://defeo.lu/docet

End(E) gives shortcuts
Fp case

EndFp (E) � Q(
p�p):

the class groupCl(�4p) acts on the set
of supersingular curves =Fp ;
Structure ofCl(�4p)

m
relations between ideal classes

m
shortcuts in the graph.
I see CSI-FiSh signatures
(Beullens–Kleinjung–Vercauteren);

I akin to attack on class group VDF.

Some additional work to find
endomorphism ! such that
! � ̂(Q) = �̂(Q).

General case (both Fp and Fp2)
End(E) isomorphic to an
order in a quaternion algebra;
Structure ofEnd(E) (orEnd(E 0))

m
shortcuts (through Fp2).
I Related to attacks on the
Charles–Goren–Lauter hash function.

Additional work to find ! 2 End(E).

WEHAVE A PROBLEM!

No known way to construct supersingular
curves without knowledge ofEnd(E).

Only known fix: Trusted setup.

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 21 / 28

https://defeo.lu/docet

End(E) gives shortcuts
Fp case

EndFp (E) � Q(
p�p):

the class groupCl(�4p) acts on the set
of supersingular curves =Fp ;
Structure ofCl(�4p)

m
relations between ideal classes

m
shortcuts in the graph.
I see CSI-FiSh signatures
(Beullens–Kleinjung–Vercauteren);

I akin to attack on class group VDF.

Some additional work to find
endomorphism ! such that
! � ̂(Q) = �̂(Q).

General case (both Fp and Fp2)
End(E) isomorphic to an
order in a quaternion algebra;
Structure ofEnd(E) (orEnd(E 0))

m
shortcuts (through Fp2).
I Related to attacks on the
Charles–Goren–Lauter hash function.

Additional work to find ! 2 End(E).

WEHAVE A PROBLEM!

No known way to construct supersingular
curves without knowledge ofEnd(E).

Only known fix: Trusted setup.

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 21 / 28

https://defeo.lu/docet

End(E) gives shortcuts
Fp case

EndFp (E) � Q(
p�p):

the class groupCl(�4p) acts on the set
of supersingular curves =Fp ;
Structure ofCl(�4p)

m
relations between ideal classes

m
shortcuts in the graph.
I see CSI-FiSh signatures
(Beullens–Kleinjung–Vercauteren);

I akin to attack on class group VDF.

Some additional work to find
endomorphism ! such that
! � ̂(Q) = �̂(Q).

General case (both Fp and Fp2)
End(E) isomorphic to an
order in a quaternion algebra;
Structure ofEnd(E) (orEnd(E 0))

m
shortcuts (through Fp2).
I Related to attacks on the
Charles–Goren–Lauter hash function.

Additional work to find ! 2 End(E).

WEHAVE A PROBLEM!

No known way to construct supersingular
curves without knowledge ofEnd(E).

Only known fix: Trusted setup.
Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 21 / 28

https://defeo.lu/docet

Trusted setup
y2 = x 3 + x

E

Start from a well known supersingular
curve,

Do a randomwalk,
Forget it.

Classical Quantum
Fp graph Fp2 graph Fp graph Fp2 graph

Computing shortcuts Lp(1=2) O(
p

p) polylog(p) O(4
p

p)
Pairing inversion Lp(1=3) Lp(1=3) polylog(p) polylog(p)

Quantum annoyance:
Computing shortcuts in Fp2 is quantumly hard;
Pairing inversion attacks must be run online, useless if Shor’s algorithm takes much longer
than target delay.

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 22 / 28

https://defeo.lu/docet

Trusted setup
y2 = x 3 + x

E

Start from a well known supersingular
curve,
Do a randomwalk,

Forget it.

Classical Quantum
Fp graph Fp2 graph Fp graph Fp2 graph

Computing shortcuts Lp(1=2) O(
p

p) polylog(p) O(4
p

p)
Pairing inversion Lp(1=3) Lp(1=3) polylog(p) polylog(p)

Quantum annoyance:
Computing shortcuts in Fp2 is quantumly hard;
Pairing inversion attacks must be run online, useless if Shor’s algorithm takes much longer
than target delay.

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 22 / 28

https://defeo.lu/docet

Trusted setup
y2 = x 3 + x

E

Start from a well known supersingular
curve,
Do a randomwalk,
Forget it.

Classical Quantum
Fp graph Fp2 graph Fp graph Fp2 graph

Computing shortcuts Lp(1=2) O(
p

p) polylog(p) O(4
p

p)
Pairing inversion Lp(1=3) Lp(1=3) polylog(p) polylog(p)

Quantum annoyance:
Computing shortcuts in Fp2 is quantumly hard;
Pairing inversion attacks must be run online, useless if Shor’s algorithm takes much longer
than target delay.

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 22 / 28

https://defeo.lu/docet

Trusted setup
y2 = x 3 + x

E

Start from a well known supersingular
curve,
Do a randomwalk,
Forget it.

Classical Quantum
Fp graph Fp2 graph Fp graph Fp2 graph

Computing shortcuts Lp(1=2) O(
p

p) polylog(p) O(4
p

p)
Pairing inversion Lp(1=3) Lp(1=3) polylog(p) polylog(p)

Quantum annoyance:
Computing shortcuts in Fp2 is quantumly hard;
Pairing inversion attacks must be run online, useless if Shor’s algorithm takes much longer
than target delay.
Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 22 / 28

https://defeo.lu/docet

Distributed trusted setups

y2 = x 3 + xE1

�1

E2

�2

E3

�3

Mitigate trusted setup woes by distributing trust:
Participant i performs a randomwalk (in Fp),

Publishes a proof of isogeny knowledge,
Repeat.

Proof options:
Generic ZK proofs,
Isogeny ZK proofs (SeaSign),
Pairing proofs (not ZK!):

P ;Q = H(Ei ;Ei+1);

ei (P ; �̂i (Q)) = ei+1(�i (P);Q):

Properties: asynchronous, robust against n � 1
coalition, verification scales linearly, updatable, . . .

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 23 / 28

https://defeo.lu/docet

Distributed trusted setups

y2 = x 3 + xE1

�1

E2

�2

E3

�3

Mitigate trusted setup woes by distributing trust:
Participant i performs a randomwalk (in Fp),
Publishes a proof of isogeny knowledge,

Repeat.

Proof options:
Generic ZK proofs,
Isogeny ZK proofs (SeaSign),
Pairing proofs (not ZK!):

P ;Q = H(Ei ;Ei+1);

ei (P ; �̂i (Q)) = ei+1(�i (P);Q):

Properties: asynchronous, robust against n � 1
coalition, verification scales linearly, updatable, . . .

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 23 / 28

https://defeo.lu/docet

Distributed trusted setups

y2 = x 3 + xE1

�1

E2

�2

E3

�3

Mitigate trusted setup woes by distributing trust:
Participant i performs a randomwalk (in Fp),
Publishes a proof of isogeny knowledge,
Repeat.

Proof options:
Generic ZK proofs,
Isogeny ZK proofs (SeaSign),
Pairing proofs (not ZK!):

P ;Q = H(Ei ;Ei+1);

ei (P ; �̂i (Q)) = ei+1(�i (P);Q):

Properties: asynchronous, robust against n � 1
coalition, verification scales linearly, updatable, . . .

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 23 / 28

https://defeo.lu/docet

Distributed trusted setups

y2 = x 3 + xE1

�1

E2

�2

E3

�3

Mitigate trusted setup woes by distributing trust:
Participant i performs a randomwalk (in Fp),
Publishes a proof of isogeny knowledge,
Repeat.

Proof options:
Generic ZK proofs,
Isogeny ZK proofs (SeaSign),
Pairing proofs (not ZK!):

P ;Q = H(Ei ;Ei+1);

ei (P ; �̂i (Q)) = ei+1(�i (P);Q):

Properties: asynchronous, robust against n � 1
coalition, verification scales linearly, updatable, . . .

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 23 / 28

https://defeo.lu/docet

Distributed trusted setups

y2 = x 3 + xE1

�1

E2

�2

E3

�3

Mitigate trusted setup woes by distributing trust:
Participant i performs a randomwalk (in Fp),
Publishes a proof of isogeny knowledge,
Repeat.

Proof options:
Generic ZK proofs,
Isogeny ZK proofs (SeaSign),
Pairing proofs (not ZK!):

P ;Q = H(Ei ;Ei+1);

ei (P ; �̂i (Q)) = ei+1(�i (P);Q):

Properties: asynchronous, robust against n � 1
coalition, verification scales linearly, updatable, . . .

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 23 / 28

https://defeo.lu/docet

Distributed trusted setups

y2 = x 3 + xE1

�1

E2

�2

E3

�3

Mitigate trusted setup woes by distributing trust:
Participant i performs a randomwalk (in Fp),
Publishes a proof of isogeny knowledge,
Repeat.

Proof options:
Generic ZK proofs,
Isogeny ZK proofs (SeaSign),
Pairing proofs (not ZK!):

P ;Q = H(Ei ;Ei+1);

ei (P ; �̂i (Q)) = ei+1(�i (P);Q):

Properties: asynchronous, robust against n � 1
coalition, verification scales linearly, updatable, . . .

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 23 / 28

https://defeo.lu/docet

Distributed trusted setups

y2 = x 3 + xE1

�1

E2

�2

E3

�3

Mitigate trusted setup woes by distributing trust:
Participant i performs a randomwalk (in Fp),
Publishes a proof of isogeny knowledge,
Repeat.

Proof options:
Generic ZK proofs,
Isogeny ZK proofs (SeaSign),
Pairing proofs (not ZK!):

P ;Q = H(Ei ;Ei+1);

ei (P ; �̂i (Q)) = ei+1(�i (P);Q):

Properties: asynchronous, robust against n � 1
coalition, verification scales linearly, updatable, . . .

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 23 / 28

https://defeo.lu/docet

Beyond VDFs

Watermarking
Goal: reward evaluator for its e�ort.

Watermarking: issue proof of evaluation tied to evaluator identity

E Emid E 0

�̂1�̂2

�̂ = �̂2 � �̂1

Secret key: scalar s 2 Z=NZ,
Public key: s�(P) 2 E 0 (+ proof of exponent knowledge),

Proof of work: s�̂1(Q) 2 Emid,
Verification: emid(�2(P); s�̂1(Q)) = e 0(s�(P);Q).
Properties: blind (can be checked before the computation is complete).

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 25 / 28

https://defeo.lu/docet

Encryption to the future (time-locks)
Goal: encrypt now, decryption only possible a�er delay.

Applications: auctions, voting, . . .
Idea: start from Boneh–Franklin IBE, just add isogeniesTM.

Bidder Auctioneer
Publishes auction keyQ = H(sid)

starts evaluating �̂(Q)
samples random s 2 Z=NZ
computes k = e(�(P);Q)s

encrypts o�er ok = Enck (o)
sends (ok ; sP) �!

...
computes k = e(sP ; �̂(Q))

decrypts ok

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 26 / 28

https://defeo.lu/docet

Open questions

Understand the impact of large memory requirements in evaluation; is a time/memory
trade-o� reasonable?

Remove trusted setup:
I Hash into the supersingular set, or
I Construct ordinary pairing friendly curves with large discriminant.

Explore more advanced pairing+delay constructions.
Spendmillions on dedicated hardware for 2-isogenies.

Just Add IsogeniesTM!

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 27 / 28

https://defeo.lu/docet

Open questions

Understand the impact of large memory requirements in evaluation; is a time/memory
trade-o� reasonable?
Remove trusted setup:
I Hash into the supersingular set, or
I Construct ordinary pairing friendly curves with large discriminant.

Explore more advanced pairing+delay constructions.
Spendmillions on dedicated hardware for 2-isogenies.

Just Add IsogeniesTM!

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 27 / 28

https://defeo.lu/docet

Open questions

Understand the impact of large memory requirements in evaluation; is a time/memory
trade-o� reasonable?
Remove trusted setup:
I Hash into the supersingular set, or
I Construct ordinary pairing friendly curves with large discriminant.

Explore more advanced pairing+delay constructions.

Spendmillions on dedicated hardware for 2-isogenies.

Just Add IsogeniesTM!

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 27 / 28

https://defeo.lu/docet

Open questions

Understand the impact of large memory requirements in evaluation; is a time/memory
trade-o� reasonable?
Remove trusted setup:
I Hash into the supersingular set, or
I Construct ordinary pairing friendly curves with large discriminant.

Explore more advanced pairing+delay constructions.
Spendmillions on dedicated hardware for 2-isogenies.

Just Add IsogeniesTM!

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 27 / 28

https://defeo.lu/docet

Open questions

Understand the impact of large memory requirements in evaluation; is a time/memory
trade-o� reasonable?
Remove trusted setup:
I Hash into the supersingular set, or
I Construct ordinary pairing friendly curves with large discriminant.

Explore more advanced pairing+delay constructions.
Spendmillions on dedicated hardware for 2-isogenies.

Just Add IsogeniesTM!

Luca De Feo (IBM Research Zürich) VDFs from Isogenies and Pairings https://defeo.lu/docet ECC 2019 27 / 28

https://defeo.lu/docet

Thank you

https://defeo.lu/

@luca_defeo

https://defeo.lu/
https://twitter.com/luca_defeo

